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Sines, cosines, and complex exponentials play an important role in
signal and information processing. The purpose of this lab is to gain
some experience and intuition on what these signals look like and how
they behave. The signals we consider here are discrete and finite because
they are indexed by an integer time index n = 0, 1, . . . , N − 1. The con-
stant N is referred to as the length of the signal. Start by considering a
separate integer number k to define the discrete complex exponential ekN(n)
of discrete frequency k and duration N as

ekN(n) =
1√
N

ej2πkn/N =
1√
N

exp(j2πkn/N). (1)

The (regular) complex exponential is defined as ej2πkn/N = cos(2πkn/N)+
j sin(2πkn/N) so that if we compute the real and imaginary parts of
ekN(n) we have that

Re (ekN(n)) =
1√
N

cos(2πkn/N),

Im (ekN(n)) =
1√
N

sin(2πkn/N).
(2)

We say that the real part of the complex exponential is a discrete cosine
of discrete frequency k and duration N and that the imaginary part is a
discrete sine of discrete frequency k and duration N. The discrete fre-
quency k in (2) determines the number of oscillations that we see in the N
elements of the signal. A sine, cosine, or complex exponential of discrete
frequency k has a total of k complete oscillations in the N samples.

Mathematically speaking, the complex exponential, the sine, and the
cosine are all different signals. Intuitively speaking, all of them are os-
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cillations of the same frequency. Since complex exponentials have imag-
inary parts, they don’t exist in the real world. Nevertheless, we work
with them instead of sines and cosines because they are easier to handle.
Rules of exponential functions are easier than the corresponding rules of
trigonometric functions.

1 Signal generation

Let us begin by generating and displaying some complex exponentials
and by using the generated signals to explore some of their important
properties.

1.1 Generate complex exponentials
1.1 Generate complex exponentials. Create a Python class to represent
a complex exponential of discrete frequency k and signal duration N. The
attributes of this class include a vector with N components containing
the elements of the signal ekN(n) defined in (1), as well as its real and
imaginary parts [cf. (2)]. Plot the real and imaginary components for
N = 32 and different values of k. Observe that some of these signals
don’t look much like oscillations. In your report, show the plots for k = 0,
k = 2, k = 9, and k = 16.

1.2 Equivalent complex exponentials
1.2 Equivalent complex exponentials. Use the class in Part 1.1 to gen-
erate complex exponentials of the same duration and frequencies, k and
l, that are N apart. E.g., make N = 32 and plot signals for frequencies
k = 3 and l = 3 + 32 = 35 and l = 3− 32 = −29. You should observe
that these signals are identical.

1.3 Conjugate complex exponentials
1.3 Conjugate complex exponentials. Use the class in Part 1.1 to gener-
ate complex exponentials of the same duration and opposite frequencies
k and −k. E.g., make N = 32 and plot signals for frequencies k = 3 and
k = −3. You should observe that these signals have the same real part
and opposite imaginary parts. We say that the signals are conjugates of
each other.

1.4 More conjugate complex exponentials
1.4 More conjugate complex exponentials. Consider now frequencies
k and l in the interval [0, N − 1] such that their sum is k + l = N. To
think about this relationship, order the frequencies from k = 0 to k = N
and start walking up the chain from k = 0, to k = 1, to k = 2, and so
on. Likewise, start walking down the chain from l = N, to l = N − 1, to
l = N − 2 and so on. When you have taken the same number of steps

2



in either direction you have that k + l = N. Given your observations in
parts 1.2 and 1.3 you should expect these signals to be conjugates of each
other. Verify your expectation with, e.g., k = 3 and l = 32− 3 = 29.

We consider now the energy of complex exponentials and the inner prod-
ucts between complex exponentials of different frequencies. Given two
signals x and y of duration N, their inner product is defined as

〈x, y〉 :=
N−1

∑
n=0

x(n)y∗(n). (3)

The energy of a signal is defined as the inner product of the signal with
itself ‖x‖2 := 〈x, x〉. We can write the signals x and y as column vec-
tors x = [x(0), . . . , x(N − 1)]T and y = [x(0), . . . , x(N − 1)]T . Then, by
defining the hermitian of a matrix or vector as the complex conjugate and
transpose, i.e. xH = (x∗)T , the inner product is simply written as the
product yHx and the energy as the product xHx. We say that a signal is
normal if it has unit energy, i.e., if ‖x‖2 = 1. We say that two signals are
orthogonal if their inner product is null, i.e., if 〈x, y〉 = 0. Orthogonality
looks like an innocent property, but it is nothing like that. It is one of the
most important properties that a group of signals can have.

1.5 Orthonormality
1.5 Orthonormality. Write a function to compute the inner product
〈ekN , elN〉 between all pairs of discrete complex exponentials of length
N and frequencies k, l = 0, 1, . . . , N − 1. Run and report your result for
N = 16. You should observe that the complex exponentials have unit
energy and are orthogonal to each other. When this happens, we say that
the signals form an orthonormal set.

2 Analysis

The numerical experiments of Part 1 demonstrated two properties that
discrete complex exponentials have that are very important for subse-
quent analyses. In this section we study these properties analytically. We
first work on the observation that when we consider frequencies k and l
that are N apart, the complex exponentials may have formulas that look
different but are actually equivalent (part 1.2).
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2.1 Equivalent complex exponentials
2.1 Equivalent complex exponentials. Consider two complex exponen-
tials ekN(n) and elN(n) as given by the definition in (1). Prove mathe-
matically that if |k− l| = N the signals are equivalent, i.e., that ekN(n) =
elN(n) for all times n.

2.2 More equivalent complex exponentials
2.2 More equivalent complex exponentials. Use the result in part 1 to
show that the same is true not only when |k− l| = N but also whenever
k− l ∈ Ṅ, that is, whenever |k− l| is a multiple of N.

The second fundamental property that we want to explore is that when-
ever we have two complex exponentials that are not equivalent their inner
product is null,

〈ekN , elN〉 :=
N−1

∑
n=0

ekN(n)e∗lN(n) = 0 (4)

We observed that this was true in Part 1.5 for some particular examples.
We will now prove that it is true in general.

2.3 Orthogonality
2.3 Orthogonality. Consider two complex exponentials ekN(n) and elN(n)
that are not equivalent, i.e., for which the difference |k− l| /∈ Ṅ is not a
multiple of N. Prove that the signals are orthogonal to each other.

2.4 Orthonormality
2.4 Orthonormality. Prove that complex exponentials have unit norm
‖ekN(n)‖2 = 〈ekN(n), ekN(n)〉 = 1. The combination of this fact with
the orthogonality proven in Part 2.3 means that a set of N consecutive
complex exponentials form an orthonormal set. Explain this statement.

The statements that we derived above are for a specific sort of discrete
complex exponential. We can write more generic versions if we do not
restrict the discrete frequency k to be discrete or if we shift the argument
of the complex exponential. When performing these operations it is in-
teresting to ask if the equivalence properties of parts 2.1 and 2.2 and the
orthogonality properties of parts 2.3 and 2.4 hold true.

2.5 Phase shifts
2.5 Phase shifts. Let φ ∈ R be an arbitrary given number that we call a
phase shift. We define a shifted complex exponential by subtracting the
shift from the exponent in (1)

eφ
kN(n) =

1√
N

ej(2πk n
N−φ) =

1√
N

exp
[

j
(

2πk
n
N
− φ

)]
. (5)
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The reason why subtracting φ from (5) is called a shift, is because the
frequency of the oscillation doesn’t change. It’s just that the oscillation
gets shifted to the right. In this problem we consider discrete frequencies
k 6= l and a same shift φ. Is there a condition to make complex exponen-
tials eφ

kN(n) and eφ
lN(n) of frequencies k and l equivalent? Is there a con-

dition that guarantees that the complex exponentials eφ
kN(n) and eφ

lN(n)
are orthogonal?

2.6 Fractional frequencies
2.6 Fractional frequencies. Lift the assumption that k in (1) is integer
and consider arbitrary frequencies k, l ∈ R. Is there a condition to make
complex exponentials ekN(n) and elN(n) of frequencies k and l equiva-
lent? Is there a condition that guarantees that the complex exponentials
ekN(n) and elN(n) are orthogonal?

3 Generating and playing musical tones

Up until now we have considered discrete signals as standalone entities.
However, discrete signals are most often used as representations of a con-
tinuous signal that exists in the palpable—as opposed to virtual—world.
To connect discrete signals to the physical world we define the sampling
time Ts as the time elapsed between times n and n + 1. Two ancillary
definitions that follow from this one are the definition of the sampling
frequency fs = 1/Ts and the definition of the signal duration T = NTs.

To move from discrete to actual frequencies, say that we are given a
discrete cosine of frequency k and duration N with an associated sam-
pling time of Ts seconds. We want to determine the frequency f0 of that
cosine. To do so, recall that a discrete cosine of frequency k has a total
of k oscillations in the N samples, which is the same as saying that it has
a total of k oscillations in T = NTs seconds. The period of the cosine is
therefore N/k samples, which, as before, is the same as saying that it has
a period of T/k = NTs/k seconds. The frequency of the cosine is the
inverse of its period,

f0 =
k
T

=
k

NTs
=

k
N

fs. (6)

Conversely, if we are given a cosine of frequency f0 Hertz that we want
to observe with a sampling frequency fs for a total of T = NTs = N/ fs
seconds, it follows that the corresponding discrete cosine has discrete
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frequency

k = N
f0

fs
. (7)

In explicit terms, we can use the definition in (2) with the discrete fre-
quency in (7) to write the discrete cosine as

x(n) = cos
[
2πkn/N

]
= cos

[
2π[( f0/ fs)N]n/N

]
(8)

Simplifying the signal durations N in (8) and recalling that Ts = 1/ fs, the
cosine x(n) can be rewritten as

x(n) = cos
[
2π( f0/ fs)n

]
= cos

[
2π f0(nTs)

]
(9)

The last expression in (9) is intuitive. It’s saying that the continuous time
cosine x(t) = cos(2π f0t) is being sampled every Ts seconds during a time
interval of length T = NTs seconds.

3.1 Discrete cosine generation
3.1 Discrete cosine generation. Write down a function that takes as
input the sampling frequency fs, the time duration T, and the frequency
f0 and returns the associated discrete cosine x(n) as generated by (9).
Your function has to also return the number of samples N. When T is
not a multiple of Ts = 1/ fs you can reduce T to the largest multiple of Ts
smaller than T.

3.2 Generate an A note
3.2 Generate an A note. The musical A note corresponds to an oscilla-
tion at frequency f0 = 440 Hertz. Use the code of part 3.1 to generate an
A note of duration T = 2 seconds sampled at a frequency fs = 44, 100
Hertz. Play the note in your computer’s speakers.

3.3 Generate musical notes
3.3 Generate musical notes. A piano has 88 keys that can generate 88
different musical notes. The frequencies of these 88 different musical
notes can be generated according to the formula

fi = 2(i−49)/12 ∗ 440 , i = 1, . . . , 88. (10)

Modify the code of Part 3.1 so that instead of taking the frequency fi as an
argument receives the piano key number and generates the correspond-
ing musical tone.

3.4 Generate musical notes
3.4 Generate musical notes. To play a song, you just need to play dif-
ferent notes in order. Use the code in Part 3.3 to play a song that has at
least as many notes as Happy Birthday.
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4 Time management

The formulation of the problems in Part 1 is lengthy, but their solutions
are straightforward. The goal is to finish them up during the Tuesday lab
session. Try to get a head start in solving the problems. You may not
succeed, but thinking about them will streamline the Tuesday session.
This should require just 1 more hour besides the lab.

The problems in Part 2 will take more time to complete. You should
wait until after class on Wednesday to solve them. We will do parts 2.1,
2.2, 2.3, and 2.4 in class. I am asking that you re-solve them yourself to
make sure that you understood them. They are very important properties
needed to understand Fourier transforms. To solve parts 2.5 and 2.6 you
have to work on your own, but the solutions are simple generalizations
of earlier parts. You should be able to wrap this up in 3 hours, about 30
minutes for each of the questions.

Part 3 is the one that will take more time because you have to apply
your creativity and problem solving skills. If you are familiar with tones,
beats, and know how to read music, this should take about 6 hours to
complete. If you don’t, part of being an engineer is being able to do
something you don’t know how to do. It’ll take you a couple more hours
to learn how to read Happy birthday.

5 Report presentation

Please remember to label both the x-axis and y-axis of all your figures
Remember also to add a legend and/or a title to the plots you’re including
in your figures (check commands A graph without units and labeled axes
makes no sense. The titles help us with grading.

Please include your code along with the lab report.
Lab reports must be named. Write down the names of all members of

the group in the first page along with the group number.
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