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Discrete signals

I We consider a discrete and finite time index set ⇒ n = 0, 1, . . . ,N − 1 ≡ [0,N − 1].

I A discrete signal x is a function mapping the time index set [0,N − 1] to a set of real values x(n)

x : [0,N − 1]→ R

I The values that the signal takes at time index n is x(n)

I Sometimes, it makes sense to talk about complex signals ⇒ x : [0,N − 1]→ C

⇒ The values x(n) = xR(n) + j xI (n) the signal takes are complex numbers

I The space of all possible signals is the space of vectors with N components ⇒ RN (or CN)
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Deltas Functions a.k.a as Impulses or Spikes

I The discrete delta function δ(n) is a spike at (initial) time n = 0

δ(n) =

{
1 if n = 0
0 else
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Delta function x(n) = δ(n)

I The shifted delta function δ(n − n0) has a spike at time n = n0

δ(n−n0) =

{
1 if n = n0

0 else
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Shifted delta function x(n) = δ(n − 3)

I This is not a new definition. Just a time shift of the previous definition
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Constants and square pulses

I A constant function x(n) has the same value c for all n

x(n) = c, for all n

0 2 4 6 8 10 12 14
0

0.5

1

Time index n = 0, 1, . . . , 15 = [0, 15]

S
ig

n
a

l
x

(n
)

Constant function x(n) = 1

I A square pulse of width M, uM(n), equals one for the first M values

uM(n) =

{
1 if 0 ≤ n < M
0 if M ≤ n
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Square pulse x(n) = u6(n)

I Can consider shifted pulses uM(n − n0), with n0 < N −M
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Units: Sampling time and signal duration

I The Sampling time Ts is the clock time elapsed between time indexes n and n + 1

I The sampling frequency fs := 1/Ts is the inverse of the sampling time

I Discrete time index n represents clock (actual) time t = nTs
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Square pulse of duration 1s observed during 2s at a sampling rate Ts = 125ms

I Total signal duration is T = NTs ⇒ We “hold” the last sample for Ts time units
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Discrete cosines and sines

I For a signal of duration N define (assume N is even):

⇒ Discrete cosine of discrete frequency k ⇒ x(n) = cos(2πkn/N)

⇒ Discrete sine of discrete frequency k ⇒ x(n) = sin(2πkn/N)
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Cosine x(n) = cos(2πkn/N) and sine x(n) = sin(2πkn/N). Frequency k = 2 and number of samples N = 32.

I Frequency k is discrete. I.e., k = 0, 1, 2, . . .

⇒ Have an integer number of complete oscillations
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Cosines of different frequencies (1 of 2)

I Discrete frequency k = 0 is a constant

I Discrete frequency k = 1 is a complete oscillation

I Frequency k = 2 is two oscillations, for k = 3 three oscillations ...
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Cosines of different frequencies (2 of 2)

I Frequency k represents k complete oscillations

I Although for large k the oscillations may be difficult to see
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I Do note that we can’t have more than N/2 oscillations

⇒ Indeed 1→ −1→ 1,→ −1, . . .

⇒ Frequency N/2 is the last one with physical meaning

I Larger frequencies replicate frequencies between k = 0 and k = N/2
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Duplicated frequencies

I Frequencies k and N − k represent the same cosine
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I Actually, if k + l = Ṅ, cosines of frequencies k and l are equivalent

I Not true for sines, but almost. The signals have opposite signs
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Discrete frequencies and actual frequencies

I What is the discrete frequency k of a cosine of frequency f0?

I Depends on sampling time Ts , frequency fs = 1
Ts

, duration T = NTs

I Period of discrete cosine of frequency k is T/k (k oscillations)

I Thus, regular frequency of said cosine is ⇒ f0 =
k

T
=

k

NTs
=

k

N
fs

I A cosine of frequency f0 has discrete frequency k = (f0/fs)N

I Only frequencies up to N/2↔ fs/2 have physical meaning

I Sampling frequency fs ⇒ Cosines up to frequency f0 = fs/2
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Use of units example

I Generate N = 32 samples of an A note with sampling frequency fs = 1, 760Hz

I The frequency of an A note is f0 = 440Hz. This entails a discrete frequency

k =
f0
fs
N =

440Hz

1, 760Hz
32 = 8
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The A note observed during T = NTs = 18.2ms with a sampling rate fs = 1, 760Hz

I Alternatively ⇒ x(n) = cos
[
2πkn/N

]
= cos

[
2π(f0/fs)Nn/N

]
I Which simplifies to ⇒ x(n) = cos

[
2π(f0/fs)n

]
= cos

[
2πf0(nTs)

]
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Noninteger frequencies

I The frequency k does not need to an integer. In that case we talk of sampled cosines and sines

⇒ Sampled cosine ⇒ x(n) = cos(2πkn/N) with arbitrary, not necessarily integer k

⇒ Sampled sine ⇒ x(n) = sin(2πkn/N) with arbitrary, not necessarily integer k

I Sampled sines and cosines have fractional oscillations (k not integer)

I Discrete sines and cosines have complete oscillations (k is integer)

⇒ Discrete sines and cosines are used to define Fourier transforms (As we will see later)
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Inner product

I Given two signals x and y with components x(n) and y(n) define the inner product of x and y as

〈x , y〉 :=
N−1∑
n=0

x(n)y∗(n)

=
N−1∑
n=0

xR(n)yR(n)−
N−1∑
n=0

xI (n)yI (n) + j
N−1∑
n=0

xI (n)yR(n) + j
N−1∑
n=0

xR(n)yI (n)

I This is the same as the inner product between vectors x and y . Just with different notation

I The Inner product is a linear operations ⇒ 〈x , y + z〉 = 〈x , y〉+ 〈x , z〉

I Reversing the order of the factor results in conjugation ⇒ 〈y , x〉 = 〈x , y〉∗
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Inner product interpretation

I The inner product 〈x , y〉 is the projection of the signal (vector) y on the signal (vector) x

I The value of 〈x , y〉 is how much of y falls in x direction

⇒ How much y resembles x . How much x predits y . Knowing x , how much of y we know

⇒ Very importantly, if 〈x , y〉 = 0 the signals are orthogonal. They are “unrelated”
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Norm and energy

I Define the norm of signal x as ⇒ ‖x‖ :=

[ N−1∑
n=0

|x(n)|2
]1/2

=

[ N−1∑
n=0

|xR(n)|2 +
N−1∑
n=0

|xI (n)|2
]1/2

I Define the energy as the norm squared ⇒ ‖x‖2 :=
N−1∑
n=0

|x(n)|2 =
N−1∑
n=0

|xR(n)|2 +
N−1∑
n=0

|xI (n)|2

I The energy of x is the inner product of x with itself ⇒ ‖x‖2 = 〈x , x〉

I Recall that for complex numbers we have x(n)x∗(n) = |xR(n)|2 + |xI (n)|2 = |x(n)|2
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Cauchy Schwarz inequality

I Inner product can’t exceed the product of the norms ⇒ − ‖x‖ ‖y‖ ≤ 〈x , y〉 ≤ ‖x‖ ‖y‖

I Inner product squared can’t exceed product of energies ⇒ 〈x , y〉2 ≤ ‖x‖2 ‖y‖2

I If you prefer explicit expressions ⇒
N−1∑
n=0

x(n)y∗(n) ≤
[ N−1∑

n=0

|x(n)|2
][ N−1∑

n=0

|y(n)|2
]

I The equalities hold if and only if the signals (vectors) x and y are collinear (aligned)
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Example: Square pulse of unit energy

I The unit energy square pulse is the signal uM(n) that takes values

uM (n) =
1√
M

if 0 ≤ n < M

uM (n) = 0 if M ≤ n

t

uM (n)

1/
√
M

M − 1 N − 1

I To compute energy of the pulse we just evaluate the definition

‖ uM ‖2 :=
N−1∑
n=0

| uM (n)|2 =
M−1∑
n=0

∣∣∣(1/
√
M)
∣∣∣2 =

M

M
= 1

I As name indicates, the unit energy square pulse has unit energy . If pulse height is 1, energy is M.
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Shifted pulses

I Shift pulse by modifying argument ⇒ uM(n − K) ⇒ Pulse is now centered at K

t

uM (n)

1/
√
M

M − 1 K K + M − 1 N − 1

I If the pulse support is disjoint (K ≥ M), the inner product of two pulses is zero

〈uM(n),uM(n − K)〉 :=
N−1∑
n=0

uM(n) uM (n − K) = 0

I Pulese are orthogonal ⇒ They are “unrelated.” One pulse does not predict the other
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Overlapping shifted pulses

I If K < M the pulses overlap. They overlap between n = K and n = M − 1. Thus, the inner product is

〈uM(n),uM(n − K)〉 :=

N−1∑
n=0

uM(n) uM (n − K) =

M−1∑
n=K

(
1/
√
M
)(

1/
√
M
)

=
M − K

M
= 1−

K

M

t

uM (n)

1/
√
M

K M − 1 K + M − 1 N − 1

I Inner product proportional to relative overlap ⇒ How much the pulses are “related” to each other
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Discrete Complex exponentials

I Discrete complex exponential of discrete frequency k and duration N

ekN(n) =
1√
N

e j2πkn/N =
1√
N

exp(j2πkn/N)

I The complex exponential function is ⇒ e j2πkn/N = cos(2πkn/N) + j sin(2πkn/N)

I The Real part is a discrete cosine. The imaginary part a discrete sine. An oscillation
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Properties

[P1] For frequency k = 0, the exponential ekN(n) = e0N(n) is a constant ⇒ ekN(n) =
1
√
N

=
1
√
N

1

[P2] For frequency k = N, the exponential ekN(n) = eNN(n) is a constant. True for any multiple k ∈ Ṅ

eNN(n) =
e j2πNn/N

√
N

=
(e j2π)n
√
N

=
(1)n
√
N

=
1
√
N

[P3] For k =
N

2
, the exponential ekN(n) = eN/2N(n) = (−1)n/

√
N. Fastest possible oscillation with N samples

eN/2N(n) =
e j2π(N/2)n/N

√
N

=
(e jπ)n
√
N

=
(−1)n
√
N

That e j2π = 1 follows from e jπ = −1. Which follows from e jπ + 1 = 0. Relates five most important constants in mathematics.
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Equivalent frequencies

Theorem
If the frequency difference is k − l = N the signals ekN(n) and elN(n) coincide for all n, i.e.,

ekN(n) =
e j2πkn/N√

N
=

e j2πln/N√
N

= elN(n)

I Exponentials with frequencies k and l are equivalent if the frequency difference is k − l = N
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Proof of equivalence

Proof.

I We prove by showing that the ratio ekN(n)/elN(n) = 1. Combine exponents

ekN(n)

elN(n)
=

e j2πkn/N

e j2πln/N
= e j2π(k−l)n/N

I By hypothesis we have that k − l = N. Therefore, the latter simplifies to

ekN(n)

elN(n)
= e j2πNn/N =

[
e j2π

]n
= 1n = 1
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Canonical frequency sets

I Canonical set ⇒ Suffice to look at N consecutive frequencies, e.g., k = 0, 1, . . .N − 1

−N, −N + 1, . . . , −1
0, 1, . . . , N − 1
N, N + 1, . . . , 2N − 1

I Another canonical choice is to make k = 0 a center frequency

−N/2 + 1, . . . , −1, 0, . . . , N/2
N/2 + 1, . . . , N − 1, N, . . . , 3N/2

I With N even (as usual) we use N/2 positive frequencies and N/2− 1 negative frequencies

I From one canonical set to the other ⇒ Chop and shift
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Conjugate frequencies

Theorem
Opposite frequencies k and −k yield conjugate signals: e−kN = e∗kN(n)

Proof.

I Just use the definitions to write the chain of equalities

e−kN(n) =
e j2π(−k)n/N

√
N

=
e−j2πkn/N

√
N

=

[
e j2πkn/N√

N

]∗
= e∗kN(n)

I Opposite frequencies ⇒ Same real part. Opposite imaginary part

⇒ The cosine is the same, the sine changes sign
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Physical meaning

I Of N canonical frequencies, only
N

2
+ 1 are distinct. No more than

N

2
oscillations in N samples

0, 1, . . . , N/2− 1 N/2
−1, . . . , −N/2 + 1

N − 1, . . . , N/2 + 1

I The frequencies 0 and N/2 do not have a conjugate counterpart. All Others do

I The canonical set −N/2 + 1, . . . ,−1, 0, 1, . . . ,N/2 is easier to interpret

⇒ Positive frequencies ranging from 0 to N/2↔ fs/2 have physical meaning

⇒ The negative frequencies are conjugates of the corresponding positive frequencies
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Orthogonality

Theorem
Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

〈ekN , elN〉 = 0

when k − l < N. E.g., when k = 0, . . .N − 1, or k = −N/2 + 1, . . . ,N/2.

I Signals of canonical sets are “unrelated.” Different rates of change

I Also note that the energy is ‖ekN‖2 = 〈ekN , ekN〉 = 1

I Exponentials with frequencies k = 0, 1, . . . ,N − 1 are orthonormal

〈ekN , elN〉 = δ(l − k)

I They are an orthonormal basis of signal space with N samples
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Proof of orthogonality

Proof.

I Use definitions of inner product and discrete complex exponential to write

〈ekN , elN〉 =

N−1∑
n=0

ekN(n)e∗lN(n) =

N−1∑
n=0

e j2πkn/N
√
N

e−j2πln/N

√
N

I Regroup terms to write as geometric series

〈ekN , elN〉 =
1

N

N−1∑
n=0

e j2π(k−l)n/N =
1

N

N−1∑
n=0

[
e j2π(k−l)/N

]n
I Geometric series with basis a sums to

∑N−1
n=0 an = (1− aN)/(1− a). Thus,

〈ekN , elN〉 =
1

N

1−
[
e j2π(k−l)/N

]N
1− e j2π(k−l)/N

=
1

N

1− 1

1− e j2π(k−l)/N
= 0

I Completed proof by noting
[
e j2π(k−l)/N

]N
= e j2π(k−l) =

[
e j2π

](k−l)
= 1
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Complex exponentials for N = 2

I When signal durations is N = 2 only frequencies k = 0 and k = 1 represent distinct signals
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I The signals are real, they have no imaginary parts
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Complex exponentials for N = 4

I When N = 4, k = 0, 1, 2 are distinct. k = −1 is conjugate of k = 1
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I Can also use k = 3 as canonical instead of k = −1 (conjugate of k = 1)
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Complex exponentials for N = 8

I Frequencies from k = 1 to k = 4 represent distinct signals
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I Frequencies k = −1 to k = −3 are conjugate signals of k = 1 to k = 3
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I All other frequencies represent one of the signals above
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Complex exponentials for N = 16

I There are 9 distinct frequencies and 7 conjugates (not shown). Some look like actual oscillations
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