## Discrete signals

Alejandro Ribeiro
Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu
http://www.seas.upenn.edu/users/~aribeiro/

January 14, 2022

Discrete signals<br>Inner products and energy<br>Discrete complex exponentials<br>Orthogonality of Discrete Complex Exponentials<br>Appendix: Plots of Discrete Complex Exponentials

- We consider a discrete and finite time index set $\Rightarrow n=0,1, \ldots, N-1 \equiv[0, N-1]$.
- A discrete signal $x$ is a function mapping the time index set $[0, N-1]$ to a set of real values $x(n)$

$$
x:[0, N-1] \rightarrow \mathbb{R}
$$

- The values that the signal takes at time index $n$ is $x(n)$
- Sometimes, it makes sense to talk about complex signals $\Rightarrow x:[0, N-1] \rightarrow \mathbb{C}$
$\Rightarrow$ The values $x(n)=x_{R}(n)+j x_{l}(n)$ the signal takes are complex numbers
- The space of all possible signals is the space of vectors with $N$ components $\Rightarrow \mathbb{R}^{N}$ (or $\mathbb{C}^{N}$ )
- The discrete delta function $\delta(n)$ is a spike at (initial) time $n=0$

$$
\text { Delta function } x(n)=\delta(n)
$$

$$
\delta(n)= \begin{cases}1 & \text { if } n=0 \\ 0 & \text { else }\end{cases}
$$



- The shifted delta function $\delta\left(n-n_{0}\right)$ has a spike at time $n=n_{0}$

$$
\begin{aligned}
& \text { Shifted delta function } x(n)=\delta(n-3) \\
& \delta\left(n-n_{0}\right)= \begin{cases}1 & \text { if } n=n_{0} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

- This is not a new definition. Just a time shift of the previous definition
- A constant function $x(n)$ has the same value $c$ for all $n$

Constant function $\times(n)=1$

$$
x(n)=c, \quad \text { for all } n
$$



- A square pulse of width $M, \Pi_{M}(n)$, equals one for the first $M$ values

$$
\sqcap_{M}(n)= \begin{cases}1 & \text { if } 0 \leq n<M \\ 0 & \text { if } M \leq n\end{cases}
$$

Square pulse $x(n)=\Pi_{6}(n)$


- Can consider shifted pulses $\Pi_{M}\left(n-n_{0}\right)$, with $n_{0}<N-M$
- The Sampling time $T_{s}$ is the clock time elapsed between time indexes $n$ and $n+1$
- The sampling frequency $f_{s}:=1 / T_{s}$ is the inverse of the sampling time
- Discrete time index $n$ represents clock (actual) time $t=n T_{s}$

- Total signal duration is $T=N T_{s} \Rightarrow \mathrm{We}$ "hold" the last sample for $T_{s}$ time units
- For a signal of duration $N$ define (assume $N$ is even):
$\Rightarrow$ Discrete cosine of discrete frequency $k \Rightarrow x(n)=\cos (2 \pi k n / N)$
$\Rightarrow$ Discrete sine of discrete frequency $k \Rightarrow x(n)=\sin (2 \pi k n / N)$
Cosine $x(n)=\cos (2 \pi k n / N)$ and sine $x(n)=\sin (2 \pi k n / N)$. Frequency $k=2$ and number of samples $N=32$.

- Frequency $k$ is discrete. I.e., $k=0,1,2, \ldots$
$\Rightarrow$ Have an integer number of complete oscillations
- Discrete frequency $k=0$ is a constant
- Discrete frequency $k=1$ is a complete oscillation
- Frequency $k=2$ is two oscillations, for $k=3$ three oscillations ...

Frequency $k=0$. Number of samples $N=32$


Frequency $k=2$. Number of samples $N=32$


Frequency $k=1$. Number of samples $N=32$


Frequency $k=3$. Number of samples $N=32$


- Frequency $k$ represents $k$ complete oscillations
- Although for large $k$ the oscillations may be difficult to see


Frequency $k=16$. Number of samples $N=32$


- Do note that we can't have more than $N / 2$ oscillations
$\Rightarrow$ Indeed $1 \rightarrow-1 \rightarrow 1, \rightarrow-1, \ldots$
$\Rightarrow$ Frequency $N / 2$ is the last one with physical meaning
- Larger frequencies replicate frequencies between $k=0$ and $k=N / 2$
- Frequencies $k$ and $N-k$ represent the same cosine

- Actually, if $k+I=\dot{N}$, cosines of frequencies $k$ and $I$ are equivalent
- Not true for sines, but almost. The signals have opposite signs
- What is the discrete frequency k of a cosine of frequency $f_{0}$ ?
- Depends on sampling time $T_{s}$, frequency $f_{s}=\frac{1}{T_{s}}$, duration $T=N T_{s}$
- Period of discrete cosine of frequency $k$ is $T / k$ ( $k$ oscillations)
- Thus, regular frequency of said cosine is $\Rightarrow f_{0}=\frac{k}{T}=\frac{k}{N T_{s}}=\frac{k}{N} f_{s}$
- A cosine of frequency $f_{0}$ has discrete frequency $k=\left(f_{0} / f_{s}\right) \mathrm{N}$
- Only frequencies up to $N / 2 \leftrightarrow f_{s} / 2$ have physical meaning
- Sampling frequency $f_{s} \Rightarrow$ Cosines up to frequency $f_{0}=f_{s} / 2$
- Generate $N=32$ samples of an A note with sampling frequency $f_{s}=1,760 \mathrm{~Hz}$
- The frequency of an A note is $f_{0}=440 \mathrm{~Hz}$. This entails a discrete frequency

$$
k=\frac{f_{0}}{f_{s}} N=\frac{440 \mathrm{~Hz}}{1,760 \mathrm{~Hz}} 32=8
$$

The A note observed during $T=N T_{S}=18.2 \mathrm{~ms}$ with a sampling rate $f_{S}=1,760 \mathrm{~Hz}$


- Alternatively $\Rightarrow x(n)=\cos [2 \pi k n / N]=\cos \left[2 \pi\left(f_{0} / f_{s}\right) N n / N\right]$
- Which simplifies to $\Rightarrow x(n)=\cos \left[2 \pi\left(f_{0} / f_{s}\right) n\right]=\cos \left[2 \pi f_{0}\left(n T_{s}\right)\right]$
- The frequency $k$ does not need to an integer. In that case we talk of sampled cosines and sines
$\Rightarrow$ Sampled cosine $\Rightarrow x(n)=\cos (2 \pi k n / N)$ with arbitrary, not necessarily integer $k$
$\Rightarrow$ Sampled sine $\Rightarrow x(n)=\sin (2 \pi k n / N)$ with arbitrary, not necessarily integer $k$
- Sampled sines and cosines have fractional oscillations ( $k$ not integer)
- Discrete sines and cosines have complete oscillations ( $k$ is integer)
$\Rightarrow$ Discrete sines and cosines are used to define Fourier transforms (As we will see later)

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

- Given two signals $x$ and $y$ with components $x(n)$ and $y(n)$ define the inner product of $x$ and $y$ as

$$
\begin{aligned}
\langle x, y\rangle & :=\sum_{n=0}^{N-1} x(n) y^{*}(n) \\
& =\sum_{n=0}^{N-1} x_{R}(n) y_{R}(n)-\sum_{n=0}^{N-1} x_{l}(n) y_{l}(n)+j \sum_{n=0}^{N-1} x_{l}(n) y_{R}(n)+j \sum_{n=0}^{N-1} x_{R}(n) y_{l}(n)
\end{aligned}
$$

- This is the same as the inner product between vectors $x$ and $y$. Just with different notation
- The Inner product is a linear operations $\Rightarrow\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
- Reversing the order of the factor results in conjugation $\Rightarrow\langle y, x\rangle=\langle x, y\rangle^{*}$
- The inner product $\langle x, y\rangle$ is the projection of the signal (vector) $y$ on the signal (vector) $x$
- The value of $\langle x, y\rangle$ is how much of $y$ falls in $x$ direction
$\Rightarrow$ How much $y$ resembles $x$. How much $x$ predits $y$. Knowing $x$, how much of $y$ we know
$\Rightarrow$ Very importantly, if $\langle x, y\rangle=0$ the signals are orthogonal. They are "unrelated"

- Define the norm of signal $x$ as $\Rightarrow\|x\|:=\left[\sum_{n=0}^{N-1}|x(n)|^{2}\right]^{1 / 2}=\left[\sum_{n=0}^{N-1}\left|x_{R}(n)\right|^{2}+\sum_{n=0}^{N-1}\left|x_{l}(n)\right|^{2}\right]^{1 / 2}$
- Define the energy as the norm squared $\Rightarrow\|x\|^{2}:=\sum_{n=0}^{N-1}|x(n)|^{2}=\sum_{n=0}^{N-1}\left|x_{R}(n)\right|^{2}+\sum_{n=0}^{N-1}\left|x_{1}(n)\right|^{2}$
- The energy of $x$ is the inner product of $x$ with itself $\Rightarrow\|x\|^{2}=\langle x, x\rangle$
- Recall that for complex numbers we have $x(n) x^{*}(n)=\left|x_{R}(n)\right|^{2}+\left|x_{i}(n)\right|^{2}=|x(n)|^{2}$
- Inner product can't exceed the product of the norms $\Rightarrow-\|x\|\|y\| \leq\langle x, y\rangle \leq\|x\|\|y\|$
- Inner product squared can't exceed product of energies $\Rightarrow\langle x, y\rangle^{2} \leq\|x\|^{2}\|y\|^{2}$
- If you prefer explicit expressions $\Rightarrow \sum_{n=0}^{N-1} x(n) y^{*}(n) \leq\left[\sum_{n=0}^{N-1}|x(n)|^{2}\right]\left[\sum_{n=0}^{N-1}|y(n)|^{2}\right]$
- The equalities hold if and only if the signals (vectors) $x$ and $y$ are collinear (aligned)
- The unit energy square pulse is the signal $\Pi_{M}(n)$ that takes values

$$
\begin{array}{ll}
\sqcap_{M}(n)=\frac{1}{\sqrt{M}} & \text { if } 0 \leq n<M \\
\sqcap_{M}(n)=0 & \text { if } M \leq n
\end{array}
$$



- To compute energy of the pulse we just evaluate the definition

$$
\left\|\sqcap_{M}\right\|^{2}:=\sum_{n=0}^{N-1}\left|\sqcap_{M}(n)\right|^{2}=\sum_{n=0}^{M-1}|(1 / \sqrt{M})|^{2}=\frac{M}{M}=1
$$

- As name indicates, the unit energy square pulse has unit energy. If pulse height is 1 , energy is $M$.
- Shift pulse by modifying argument $\Rightarrow \square_{M}(n-K) \Rightarrow$ Pulse is now centered at $K$

- If the pulse support is disjoint $(K \geq M)$, the inner product of two pulses is zero

$$
\left\langle\sqcap_{M}(n), \sqcap_{M}(n-K)\right\rangle:=\sum_{n=0}^{N-1} \sqcap_{M}(n) \sqcap_{M}(n-K)=0
$$

- Pulese are orthogonal $\Rightarrow$ They are "unrelated." One pulse does not predict the other
- If $K<M$ the pulses overlap. They overlap between $n=K$ and $n=M-1$. Thus, the inner product is

$$
\left\langle\sqcap_{M}(n), \sqcap_{M}(n-K)\right\rangle:=\sum_{n=0}^{N-1} \sqcap_{M}(n) \sqcap_{M}(n-K)=\sum_{n=K}^{M-1}(1 / \sqrt{M})(1 / \sqrt{M})=\frac{M-K}{M}=1-\frac{K}{M}
$$



- Inner product proportional to relative overlap $\Rightarrow$ How much the pulses are "related" to each other

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

- Discrete complex exponential of discrete frequency $k$ and duration $N$

$$
e_{k N}(n)=\frac{1}{\sqrt{N}} e^{j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \exp (j 2 \pi k n / N)
$$

- The complex exponential function is $\Rightarrow e^{j 2 \pi k n / N}=\cos (2 \pi k n / N)+j \sin (2 \pi k n / N)$
- The Real part is a discrete cosine. The imaginary part a discrete sine. An oscillation

$$
\operatorname{Re}\left(e^{j 2 \pi k n / N}\right), \text { with } k=2 \text { and } N=32
$$



$$
\operatorname{Im}\left(e^{j 2 \pi k n / N}\right), \text { with } k=2 \text { and } N=32
$$


[P1] For frequency $k=0$, the exponential $e_{k N}(n)=e_{0 N}(n)$ is a constant $\Rightarrow e_{k N}(n)=\frac{1}{\sqrt{N}}=\frac{1}{\sqrt{N}} 1$
[P2] For frequency $k=N$, the exponential $e_{k N}(n)=e_{N N}(n)$ is a constant. True for any multiple $k \in \dot{N}$

$$
e_{N N}(n)=\frac{e^{j 2 \pi N n / N}}{\sqrt{N}}=\frac{\left(e^{j 2 \pi}\right)^{n}}{\sqrt{N}}=\frac{(1)^{n}}{\sqrt{N}}=\frac{1}{\sqrt{N}}
$$

[P3] For $k=\frac{N}{2}$, the exponential $e_{k N}(n)=e_{N / 2 N}(n)=(-1)^{n} / \sqrt{N}$. Fastest possible oscillation with $N$ samples

$$
e_{N / 2 N}(n)=\frac{e^{j 2 \pi(N / 2) n / N}}{\sqrt{N}}=\frac{\left(e^{j \pi}\right)^{n}}{\sqrt{N}}=\frac{(-1)^{n}}{\sqrt{N}}
$$

That $e^{j 2 \pi}=1$ follows from $e^{j \pi}=-1$. Which follows from $e^{j \pi}+1=0$. Relates five most important constants in mathematics.

Theorem
If the frequency difference is $k-I=N$ the signals $e_{k N}(n)$ and $e_{I N}(n)$ coincide for all $n$, i.e.,

$$
e_{k N}(n)=\frac{e^{j 2 \pi k n / N}}{\sqrt{N}}=\frac{e^{j 2 \pi / n / N}}{\sqrt{N}}=e_{I N}(n)
$$

- Exponentials with frequencies $k$ and $I$ are equivalent if the frequency difference is $k-I=N$

Proof.

- We prove by showing that the ratio $e_{k N}(n) / e_{I N}(n)=1$. Combine exponents

$$
\frac{e_{k N}(n)}{e_{I N}(n)}=\frac{e^{j 2 \pi k n / N}}{e^{j 2 \pi / n / N}}=e^{j 2 \pi(k-l) n / N}
$$

- By hypothesis we have that $k-I=N$. Therefore, the latter simplifies to

$$
\frac{e_{k N}(n)}{e_{I N}(n)}=e^{j 2 \pi N n / N}=\left[e^{j 2 \pi}\right]^{n}=1^{n}=1
$$

- Canonical set $\Rightarrow$ Suffice to look at $N$ consecutive frequencies, e.g., $k=0,1, \ldots N-1$

$$
\begin{array}{rrrr}
-N, & -N+1, & \ldots, & -1 \\
0, & 1, & \ldots, & N-1 \\
N, & N+1, & \ldots, & 2 N-1
\end{array}
$$

- Another canonical choice is to make $k=0$ a center frequency

$$
\begin{array}{rrrrrr}
-N / 2+1, & \ldots, & -1, & 0, & \ldots, & N / 2 \\
N / 2+1, & \ldots, & N-1, & N, & \cdots, & 3 N / 2
\end{array}
$$

- With $N$ even (as usual) we use $N / 2$ positive frequencies and $N / 2-1$ negative frequencies
- From one canonical set to the other $\Rightarrow$ Chop and shift

Theorem
Opposite frequencies $k$ and $-k$ yield conjugate signals: $e_{-k N}=e_{k N}^{*}(n)$
Proof.

- Just use the definitions to write the chain of equalities

$$
e_{-k N}(n)=\frac{e^{j 2 \pi(-k) n / N}}{\sqrt{N}}=\frac{e^{-j 2 \pi k n / N}}{\sqrt{N}}=\left[\frac{e^{j 2 \pi k n / N}}{\sqrt{N}}\right]^{*}=e_{k N}^{*}(n)
$$

- Opposite frequencies $\Rightarrow$ Same real part. Opposite imaginary part
$\Rightarrow$ The cosine is the same, the sine changes sign
- Of $N$ canonical frequencies, only $\frac{N}{2}+1$ are distinct. No more than $\frac{N}{2}$ oscillations in $N$ samples

$$
\begin{array}{rrrrr}
0, & 1, & \ldots, & N / 2-1 & N / 2 \\
-1, & \ldots, & -N / 2+1 & \\
N-1, & \ldots, & N / 2+1 &
\end{array}
$$

- The frequencies 0 and $N / 2$ do not have a conjugate counterpart. All Others do
- The canonical set $-N / 2+1, \ldots,-1,0,1, \ldots, N / 2$ is easier to interpret
$\Rightarrow$ Positive frequencies ranging from 0 to $N / 2 \leftrightarrow f_{s} / 2$ have physical meaning
$\Rightarrow$ The negative frequencies are conjugates of the corresponding positive frequencies

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

## Theorem

Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

$$
\left\langle e_{k N}, e_{I N}\right\rangle=0
$$

when $k-I<N$. E.g., when $k=0, \ldots N-1$, or $k=-N / 2+1, \ldots, N / 2$

- Signals of canonical sets are "unrelated." Different rates of change
- Also note that the energy is $\left\|e_{k N}\right\|^{2}=\left\langle e_{k N}, e_{k N}\right\rangle=1$
- Exponentials with frequencies $k=0,1, \ldots, N-1$ are orthonormal

$$
\left\langle e_{k N}, e_{I N}\right\rangle=\delta(I-k)
$$

- They are an orthonormal basis of signal space with $N$ samples

Proof.

- Use definitions of inner product and discrete complex exponential to write

$$
\left\langle e_{k N}, e_{\mid N}\right\rangle=\sum_{n=0}^{N-1} e_{k N}(n) e_{l N}^{*}(n)=\sum_{n=0}^{N-1} \frac{e^{j 2 \pi k n / N}}{\sqrt{N}} \frac{e^{-j 2 \pi / n / N}}{\sqrt{N}}
$$

- Regroup terms to write as geometric series

$$
\left\langle e_{k N}, e_{\mid N}\right\rangle=\frac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi(k-l) n / N}=\frac{1}{N} \sum_{n=0}^{N-1}\left[e^{j 2 \pi(k-l) / N}\right]^{n}
$$

- Geometric series with basis a sums to $\sum_{n=0}^{N-1} a^{n}=\left(1-a^{N}\right) /(1-a)$. Thus,

$$
\left\langle e_{k N}, e_{\mid N}\right\rangle=\frac{1}{N} \frac{1-\left[e^{j 2 \pi(k-l) / N}\right]^{N}}{1-e^{j 2 \pi(k-l) / N}}=\frac{1}{N} \frac{1-1}{1-e^{j 2 \pi(k-l) / N}}=0
$$

- Completed proof by noting $\left[e^{j 2 \pi(k-l) / N}\right]^{N}=e^{j 2 \pi(k-l)}=\left[e^{j 2 \pi}\right]^{(k-l)}=1$

Discrete signals

Inner products and energy

Discrete complex exponentials

Orthogonality of Discrete Complex Exponentials

Appendix: Plots of Discrete Complex Exponentials

- When signal durations is $N=2$ only frequencies $k=0$ and $k=1$ represent distinct signals

$k=-1(k=0)$



$$
k=2(k=0)
$$

$$
k=3(k=1)
$$



- The signals are real, they have no imaginary parts
- When $N=4, k=0,1,2$ are distinct. $k=-1$ is conjugate of $k=1$

- Can also use $k=3$ as canonical instead of $k=-1$ (conjugate of $k=1$ )
- Frequencies from $k=1$ to $k=4$ represent distinct signals

- Frequencies $k=-1$ to $k=-3$ are conjugate signals of $k=1$ to $k=3$

- All other frequencies represent one of the signals above
- There are 9 distinct frequencies and 7 conjugates (not shown). Some look like actual oscillations


