Discrete Fourier transform

Alejandro Ribeiro
Dept. of Electrical and Systems Engineering
University of Pennsylvania
aribeiro@seas.upenn.edu
http://www.seas.upenn.edu/users/~aribeiro/

January 21, 2022

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

- Discrete complex exponential of discrete frequency k and duration N

$$
e_{k N}(n)=\frac{1}{\sqrt{N}} e^{j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \exp (j 2 \pi k n / N)
$$

- The complex exponential is explicitly given by

$$
e^{j 2 \pi k n / N}=\cos (2 \pi k n / N)+j \sin (2 \pi k n / N)
$$

- Real part is a discrete cosine and imaginary part a discrete sine

$$
\operatorname{Re}\left(e^{j 2 \pi k n / N}\right), \text { with } k=2 \text { and } N=32
$$

$$
\operatorname{Im}\left(e^{j 2 \pi k n / N}\right), \text { with } k=2 \text { and } N=32
$$

Theorem
If $k-I=N$ the signals $e_{k N}(n)$ and $e_{I N}(n)$ coincide for all n, i.e.,

$$
e_{\kappa N}(n)=\frac{e^{j 2 \pi k n / N}}{\sqrt{N}}=\frac{e^{j 2 \pi / n / N}}{\sqrt{N}}=e_{/ N}(n)
$$

- Although there are infinite possible frequencies complex exponentials with frequencies k and $/$ are equivalent when the difference $k-I=N$ (or $k-I=\dot{N}$)
- Only frequencies between 0 and $N-1$ are meaningful. Or, only frequencies between $-N / 2+1$ and $N / 2$ are meaningful.

Theorem

Opposite frequencies k and $-k$ yield conjugate signals: $e_{-k N}=e_{k N}^{*}(n)$
Proof.

- Just use the definitions to write the chain of equalities

$$
e_{-k N}(n)=\frac{e^{j 2 \pi(-k) n / N}}{\sqrt{N}}=\frac{e^{-j 2 \pi k n / N}}{\sqrt{N}}=\left[\frac{e^{j 2 \pi k n / N}}{\sqrt{N}}\right]^{*}=e_{k N}^{*}(n)
$$

- Opposite frequencies have the same real part and opposite imaginary part. The cosine is the same, the sine changes sign
- Only frequencies between 0 and $N / 2$ are meaningful. This is fitting, as we can't have an oscillation with more than $N / 2$ periods

Theorem

Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

$$
\left\langle e_{k N}, e_{I N}\right\rangle=0
$$

when $k-I<N$. E.g., when $k=0, \ldots N-1$, or $k=-N / 2+1, \ldots, N / 2$

- Signals of canonical sets are "unrelated." Different rates of change
- Also note that the energy is $\left\|e_{k N}\right\|^{2}=\left\langle e_{k N}, e_{k N}\right\rangle=1$
- Exponentials with frequencies $k=0,1, \ldots, N-1$ are orthonormal

$$
\left\langle e_{k N}, e_{I N}\right\rangle=\delta(I-k)
$$

- They are an orthonormal basis of signal space with N samples

Proof.

- Use definitions of inner product and discrete complex exponential to write

$$
\left\langle e_{k N}, e_{\mid N}\right\rangle=\sum_{n=0}^{N-1} e_{k N}(n) e_{l N}^{*}(n)=\sum_{n=0}^{N-1} \frac{e^{j 2 \pi k n / N}}{\sqrt{N}} \frac{e^{-j 2 \pi / n / N}}{\sqrt{N}}
$$

- Regroup terms to write as geometric series

$$
\left\langle e_{k N}, e_{\mid N}\right\rangle=\frac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi(k-l) n / N}=\frac{1}{N} \sum_{n=0}^{N-1}\left[e^{j 2 \pi(k-l) / N}\right]^{n}
$$

- Geometric series with basis a sums to $\sum_{n=0}^{N-1} a^{n}=\left(1-a^{N}\right) /(1-a)$. Thus,

$$
\left\langle e_{k N}, e_{I N}\right\rangle=\frac{1}{N} \frac{1-\left[e^{j 2 \pi(k-l) / N}\right]^{N}}{1-e^{j 2 \pi(k-l) / N}}=\frac{1}{N} \frac{1-1}{1-e^{j 2 \pi(k-l) / N}}=0
$$

- Completed proof by noting $\left[e^{j 2 \pi(k-l) / N}\right]^{N}=e^{j 2 \pi(k-l)}=\left[e^{j 2 \pi}\right]^{(k-l)}=1$

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

- Signal x of duration N with elements $x(n)$ for $n=0, \ldots, N-1$
- X is the discrete Fourier transform (DFT) of x if for all $k \in \mathbb{Z}$

$$
X(k):=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \exp (-j 2 \pi k n / N)
$$

- We write $X=\mathcal{F}(x)$. All values of X depend on all values of x
- The argument k of the DFT is referred to as frequency
- DFT is complex even if signal is real $\Rightarrow X(k)=X_{R}(k)+j X_{l}(k)$
\Rightarrow It is customary to focus on magnitude

$$
|X(k)|=\left[X_{R}^{2}(k)+X_{I}^{2}(k)\right]^{1 / 2}=\left[X(k) X^{*}(k)\right]^{1 / 2}
$$

- Discrete complex exponential (freq. k) $\Rightarrow e_{-k N}(n)=\frac{1}{\sqrt{N}} e^{-j 2 \pi k n / N}$
- Can rewrite DFT as $\Rightarrow X(k)=\sum_{n=0}^{N-1} x(n) e_{-k N}(n)=\sum_{n=0}^{N-1} x(n) e_{k N}^{*}(n)$
- And from the definition of inner product $\Rightarrow X(k)=\left\langle x, e_{k N}\right\rangle$
- DFT element $X(k) \Rightarrow$ inner product of $x(n)$ with $e_{k N}(n)$
\Rightarrow Projection of $x(n)$ onto complex exponential of frequency k
\Rightarrow How much of the signal x is an oscillation of frequency k
- The unit energy square pulse is the signal $\sqcap_{M}(n)$ that takes values $\sqcap_{M}(n)$

$$
\begin{array}{ll}
\sqcap_{M}(n)=\frac{1}{\sqrt{M}} & \text { if } 0 \leq n<M \\
\sqcap_{M}(n)=0 & \text { if } M \leq n
\end{array}
$$

- Since only the first $M-1$ elements of $\sqcap_{M}(n)$ are not null, the DFT is

$$
X(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \sqcap_{M}(n) e^{-j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \sum_{n=0}^{M-1} \frac{1}{\sqrt{M}} e^{-j 2 \pi k n / N}
$$

- $X(k)=$ sum of first M components of exponential of frequency $-k$
- Can reduce to simpler expression but who cares? \Rightarrow It's just a sum

Square pulse of length $M=2$ and overall signal duration $N=32$

$$
X(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{1} \frac{1}{\sqrt{2}} e^{-j 2 \pi k n / N}=\frac{1}{\sqrt{2 N}}\left(1+e^{-j 2 \pi k / N}\right)
$$

- E.g., $X(k)=\frac{2}{\sqrt{2 N}}$ at $k=0, \pm N, \ldots$ and $X(k)=0$ at $k=0 \pm N / 2, \pm 3 N / 2, \ldots$

Modulus $|X(k)|$ of the DFT of square pulse, duration $N=32$, pulse length $M=2$

- This DFT is periodic with period $N \Rightarrow$ true in general
- Consider frequencies k and $k+N$. The DFT at $k+N$ is

$$
X(k+N):=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi(k+N) n / N}
$$

- Complex exponentials of freqs. k and $k+N$ are equivalent. Then

$$
X(k+N):=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}=X(k)
$$

- DFT values N apart are equivalent \Rightarrow DFT has period N
- Suffices to look at N consecutive frequencies \Rightarrow canonical sets
\Rightarrow Computation $\Rightarrow k \in[0, N-1]$
\Rightarrow Interpretation $\Rightarrow k \in[-N / 2, N / 2]$ (actually, $N+1$ freqs.)
\Rightarrow Related by chop and shift $\Rightarrow[-N / 2,-1] \sim[N / 2, N-1]$
- DFT of the square pulse highlighting frequencies $k \in[0, N-1]$

- Frequencies larger than $N / 2$ have no clear physical meaning
- DFT of the square pulse highlighting frequencies $k \in[-N / 2, N / 2]$
- Negative freq. $-k$ has the same interpretation as positive freq. k
- One redundant element $\Rightarrow X(-N / 2)=X(N / 2)$. Just convenient

Modulus $|X(k)|$ of the DFT of square pulse, duration $N=32$, pulse length $M=2$

- Obtain frequencies $k \in[-N / 2,-1]$ from frequencies $[N / 2, N-1]$
- The DFT X gives information on how fast the signal x changes

DFT modulus of square pulse, duration $N=256$, pulse length $M=2$

DFT modulus of square pulse, duration $N=256$, pulse length $M=4$

Frequency index $k=-128,-127, \ldots, 128=[-128,128]$

- For length $M=2$ have weight at high frequencies
- Length $M=4$ concentrates weight at lower frequencies
- Pulse of length $M=2$ changes more than a pulse of length $M=4$
- The lengthier the pulse the less it changes \Rightarrow DFT concentrates at zero freq.

DFT modulus of square pulse, duration $N=256$, pulse length $M=4$

$$
\text { Frequency index } k=-128,-127, \ldots, 128=[-128,128]
$$

DFT modulus of square pulse, duration $N=256$, pulse length $M=16$

DFT modules of square pulse, duration $N=256$, pulse length $M=8$

$$
\text { Frequency index } k=-128,-127, \ldots, 128=[-128,128]
$$

DFT modulus of square pulse, duration $N=256$, pulse length $M=32$

- The delta function is $\delta(0)=1$ and $\delta(n)=0$, else. Then, the DFT is

$$
X(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \delta(n) e^{-j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \delta(0) e^{-j 2 \pi k 0 / N}=\frac{1}{\sqrt{N}}
$$

- Only the N values $k \in[0,15]$ shown. DFT defined for all k but periodic
- Observe that the energy is conserved $\|X\|^{2}=\|\delta\|^{2}=1$
- For shifted delta $\delta\left(n_{0}-n_{0}\right)=1$ and $\delta\left(n-n_{0}\right)=0$ otherwise. Thus

$$
X(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \delta\left(n-n_{0}\right) e^{-j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \delta\left(n_{0}-n_{0}\right) e^{-j 2 \pi k n_{0} / N}
$$

- Of course $\delta\left(n_{0}-n_{0}\right)=\delta(0)=1$, implying that

$$
X(k)=\frac{1}{\sqrt{N}} e^{-j 2 \pi k n_{0} / N}=e_{-n_{0} N}(k)
$$

-Complex exponential of frequency $-n_{0}$ (below, $N=16$ and $n_{0}=1$)

Shifted delta function $x(n)=\delta\left(n-n_{0}\right)$

Time index $n=0,1, \ldots, 15=[0,15]$

$$
\operatorname{DFT} X(k)=\frac{1}{\sqrt{N}} e^{-j 2 \pi k n_{0} / N}=e_{-n_{0} N^{(k)}}
$$

- Complex exponential of freq. $k_{0} \Rightarrow x(n)=\frac{1}{\sqrt{N}} e^{j 2 \pi k_{0} n / N}=e_{k_{0} N}(n)$
- Use inner product form of DFT definition $\Rightarrow X(k)=\left\langle e_{k_{0}}, e_{k N}\right\rangle$
- Orthonormality of complex exponentials $\Rightarrow\left\langle e_{k_{0} N}, e_{k N}\right\rangle=\delta\left(k-k_{0}\right)$

$$
\text { Complex exponential } x(n)=\frac{1}{\sqrt{N}} e^{j 2 \pi k_{0} n / N}=e_{k_{0} N}(n)
$$

DFT is shifted delta function $X(k)=\delta\left(k-k_{0}\right)$

- DFT of exponential $e_{k_{0}} N(n)$ is shifted delta $X(k)=\delta\left(k-k_{0}\right)$
- Constant function $x(n)=1 / \sqrt{N}$ (it has unit energy) and $k=0$
\Rightarrow Complex exponential with frequency $k_{0}=0 \Rightarrow x(n)=e_{0 N}$
- Use inner product form of DFT definition $\Rightarrow X(k)=\left\langle e_{0 N}, e_{k N}\right\rangle$
- Complex exponential orthonormality $\Rightarrow\left\langle e_{0 N}, e_{k N}\right\rangle=\delta(k-0)=\delta(k)$

- DFT of constant $x(n)=1 / \sqrt{N}$ is delta function $X(k)=\delta(k)$
- DFT of a signal captures its rate of change
- Signals that change faster have more DFT weight at high frequencies
- DFT conserves energy (all have unit energy in our examples)
- Energy of DFT $X=\mathcal{F}(x)$ is the same as energy of the signal x
- Indeed, an important property we will show
- Duality of signal - transform pairs (signals and DFTs come in pairs)
- DFT of delta is a constant. DFT of constant is a delta
- DFT of exponential is shifted delta. DFT of shifted delta is exponential
- Indeed, a fact that follows from the form of the inverse DFT

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

- Sampling time T_{s}, sampling frequency f_{s}, signal duration $T=N T_{s}$
- Discrete frequency $k \Rightarrow k$ oscillations in time $N T_{s}=$ Period $N T_{s} / k$
- Discrete frequency k equivalent to real frequency $f_{k}=\frac{k}{N T_{s}}=k \frac{f_{s}}{N}$
- In particular, $k=N / 2$ equivalent to $\Rightarrow f_{N / 2}=\frac{N / 2 f_{s}}{N}=\frac{f_{s}}{2}$
- Set of frequencies $k \in[-N / 2, N / 2]$ equivalent to real frequencies
\Rightarrow That lie between $-f_{s} / 2$ and $f_{s} / 2$
\Rightarrow Are spaced by f_{s} / N (difference between frequencies f_{k} and f_{k+1})
- Interval width given by sampling frequency. Resolution given by N
- Complex exponential of frequency $f_{0}=k_{0} f_{s} / N$
\Rightarrow Discrete frequency k_{0} and DFT $\Rightarrow X(k)=\delta\left(k-k_{0}\right)$
- But frequency k_{0} corresponds to frequency $f_{0} \Rightarrow X(f)=\delta\left(f-f_{0}\right)$

- True only when frequency $f_{0}=\left(k_{0} / N\right) f_{s}$ is a multiple of f_{s} / N
- Square pulse of length $T_{0}=4 \mathrm{~s}$ observed during a total of $T=32 \mathrm{~s}$.
- Sampled every $T_{s}=125 \mathrm{~ms} \Rightarrow$ Sample frequency $f_{s}=8 \mathrm{~Hz}$
- Total number of samples $\Rightarrow N=T / T_{s}=256$
- Maximum frequency $k=N / 2=128 \leftrightarrow f_{k}=f_{N / 2}=f_{s} / 2=4 \mathrm{~Hz}$
- Fequency resolution $f_{s} / N=8 \mathrm{~Hz} / 256=0.03125 \mathrm{~Hz}$

- Interval between freqs. $\Rightarrow f_{s} / N=8 \mathrm{~Hz} / 256=1 / 32=0.03125 \mathrm{~Hz}$
$\Rightarrow 32$ equally spaced frees for each 1 Hz interval $=8$ every 0.125 Hz .
Sampling frequency $f_{s}=8 \mathrm{~Hz}$, duration $T=32 \mathrm{~s}$, length $T=4 \mathrm{~s}$

- Zeros of DFT are at frequencies $0.250 \mathrm{~Hz}, 0.500 \mathrm{~Hz}, 0.750 \mathrm{~Hz}, \ldots$
\Rightarrow Thus, zeros are at frequencies are $1 / T_{0}, 2 / T_{0}, 3 / T_{0}, \ldots$
- Most (a lot) of the DFT energy is between freqs. $-1 / T_{0}$ and $1 / T_{0}$

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

- Given a Fourier transform X, the inverse (i)DFT $x=\mathcal{F}^{-1}(X)$ is

$$
x(n):=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x(k) \exp (j 2 \pi k n / N)
$$

- Same as DFT but for sign in the exponent (also, sum over k, not n)
- Any summation over N consecutive frequencies works as well. E.g.,

$$
x(n)=\frac{1}{\sqrt{N}} \sum_{k=-N / 2+1}^{N / 2} X(k) e^{j 2 \pi k n / N}
$$

- Because for a DFT X we know that it must be $X(k+N)=X(k)$

Theorem
The inverse DFT of the DFT of x is the signal $x \Rightarrow \mathcal{F}^{-1}[\mathcal{F}(x)]=x$

- Every signal x can be written as a sum of complex exponentials

$$
x(n)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N}=\frac{1}{\sqrt{N}} \sum_{k=-N / 2+1}^{N / 2} X(k) e^{j 2 \pi k n / N}
$$

- Coefficient multiplying $e^{j 2 \pi k n / N}$ is $X(k)=k$ th element of DFT of x

$$
X(k):=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}
$$

Proof.

- Let $X=\mathcal{F}(x)$ be the DFT of x. Let $\tilde{x}=\mathcal{F}^{-1}(X)$ be the iDFT of X.
\Rightarrow We want to show that $\tilde{x} \equiv x$
- From the definition of the iDFT of $X \Rightarrow \tilde{x}(\tilde{n})=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k \tilde{n} / N}$
- From the definition of the DFT of $x \Rightarrow X(k):=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}$
- Substituting expression for $X(k)$ into expression for $\tilde{x}(\tilde{n})$ yields

$$
\tilde{x}(\tilde{n})=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1}\left[\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}\right] e^{j 2 \pi k \tilde{n} / N}
$$

Proof.

- Exchange summation order to sum first over k and then over n

$$
\tilde{x}(\tilde{n})=\sum_{n=0}^{N-1} x(n)\left[\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{j 2 \pi k \tilde{n} / N} \frac{1}{\sqrt{N}} e^{-j 2 \pi k n / N}\right]
$$

- Pulled $x(n)$ out because it doesn't depend on k
- Innermost sum is the inner product between $e_{\tilde{n} N}$ and $e_{n N}$. Orthonormality:

$$
\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{j 2 \pi k \tilde{n} / N} \frac{1}{\sqrt{N}} e^{-j 2 \pi k n / N}=\delta(\tilde{n}-n)
$$

- Reducing to $\Rightarrow \tilde{x}(\tilde{n})=\sum_{n=0}^{N-1} x(n) \delta(\tilde{n}-n)=x(\tilde{n})$
- Last equation is true because only term $n=\tilde{n}$ is not null in the sum
- Discrete complex exponential (freq. n) $\Rightarrow e_{n N}(k)=\frac{1}{\sqrt{N}} e^{j 2 \pi k n / N}$
- Rewrite iDFT as $\Rightarrow x(n)=\sum_{k=0}^{N-1} X(k) e_{n N}(k)=\sum_{k=0}^{N-1} X(k) e_{-n N}^{*}(k)$
- And from the definition of inner product $\Rightarrow x(n)=\left\langle X, e_{-n N}\right\rangle$
- iDFT element $X(k) \Rightarrow$ inner product of $X(k)$ with $e_{-n N}(k)$
- Different from DFT, this is not the most useful interpretation
- Signal as sum of exponentials $\Rightarrow x(n)=\frac{1}{\sqrt{N}} \sum_{k=-N / 2+1}^{N / 2} X(k) e^{j 2 \pi k n / N}$
- Expand the sum inside out from $k=0$ to $k= \pm 1$, to $k= \pm 2, \ldots$

$$
\begin{aligned}
& x(n)=x(0) \quad e^{j 2 \pi 0 n / N} \quad \text { constant } \\
& +X(1) \quad e^{j 2 \pi 1 n / N} \quad+X(-1) \quad e^{-j 2 \pi 1 n / N} \quad \text { single oscillation } \\
& +X(2) \quad e^{j 2 \pi 2 n / N}+X(-2) \quad e^{-j 2 \pi 2 n / N} \quad \text { double oscillation } \\
& +X\left(\frac{N}{2}-1\right) e^{j 2 \pi\left(\frac{N}{2}-1\right) n / N}+X\left(-\frac{N}{2}+1\right) e^{-j 2 \pi\left(\frac{N}{2}-1\right) n / N}\left(\frac{N}{2}-1\right) \text { - oscillation } \\
& +X\left(\frac{N}{2}\right) \quad e^{j 2 \pi\left(\frac{N}{2}\right) n / N} \quad \frac{N}{2} \text { - oscillation }
\end{aligned}
$$

- Start with slow variations and progress on to add faster variations
- Consider square pulse of duration $N=256$ and length $M=128$
- Reconstruct with frequency $k=0$ only (DC component)

Pulse reconstruction with $\mathrm{k}=0$ frequencies $(N=256, M=128)$

- Bound to be not very good \Rightarrow Just the average signal value
- Consider square pulse of duration $N=256$ and length $M=128$
- Reconstruct with frequencies $k=0, k= \pm 1$, and $k= \pm 2$

Pulse reconstruction with $\mathrm{k}=2$ frequencies $(N=256, M=128)$

- Not too bad, sort of looks like a pulse \Rightarrow only 3 frequencies
- Consider square pulse of duration $N=256$ and length $M=128$
- Reconstruct with frequencies up to $k=4$

- Starts to look like a good approximation
- Consider square pulse of duration $N=256$ and length $M=128$
- Reconstruct with frequencies up to $k=8$

- Good approximation of the $N=256$ values with 9 DFT coefficients
- Consider square pulse of duration $N=256$ and length $M=128$
- Reconstruct with frequencies up to $k=16$

- Compression \Rightarrow Store $k+1=17$ DFT values instead of $N=128$ samples
- Consider square pulse of duration $N=256$ and length $M=128$
- Reconstruct with frequencies up to $k=32$

- Can tradeoff less compression for better signal accuracy
(1) Start with a signal x with elements $x(n)$. Compute DFT X as

$$
X(k):=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}
$$

(2) (Re)shape spectrum \Rightarrow Transform DFT X into DFT Y
(3) With DFT Y available, recover signal y with inverse DFT

$$
y(n):=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} Y(k) e^{j 2 \pi k n / N}
$$

- An application of spectrum reshaping is to clean a noisy signal
- Signal with some underlying trend (good) and some noise (bad)

- Which is which? \Rightarrow Not clear \Rightarrow Let's look at the spectrum (DFT)
- An application of spectrum reshaping is to clean a noisy signal
- Now the trend (spikes) is clearly separated from the noise (the floor)

- How do we remove the noise? \Rightarrow Reshape the spectrum
- An application of spectrum reshaping is to clean a noisy signal
- Remove freqs. larger than $8 \Rightarrow Y(k)=0$ for $k>8, Y(k)=X(k)$ else

- How do we recover the trend? \Rightarrow Inverse DFT
- An application of spectrum reshaping is to clean a noisy signal
- Inverse DFT of reshaped specturm $Y(k)$ yields cleaned signal $y(n)$

Signal $y(n)$ reconstructed from cleaned spectrum

- The trend now is clearly visible. Noise has been removed

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

- DFTs of real signals (no imaginary part) are conjugate symmetric

$$
X(-k)=X^{*}(k)
$$

- Signals of unit energy have transforms of unit energy
- More generically, the DFT preserves energy (Parseval's theorem)

$$
\sum_{n=0}^{N-1}|x(n)|^{2}=\|x\|^{2}=\|X\|^{2}=\sum_{k=0}^{N-1}|X(k)|^{2}
$$

- The DFT operator is a linear operator

$$
\mathcal{F}(a x+b y)=a \mathcal{F}(x)+b \mathcal{F}(y)
$$

Theorem
The DFT $X=\mathcal{F}(x)$ of a real signal x is conjugate symmetric

$$
X(-k)=X^{*}(k)
$$

- Can recover all DFT components from those with freqs. $k \in[0, N / 2]$
- What about components with freqs. $k \in[-N / 2,-1]$?
\Rightarrow Conjugates of those with freqs $k \in[0, N / 2]$
- Other elements are equivalent to one in $[-N / 2, N / 2]$ (periodicity)

Proof.

- Write the DFT $X(-k)$ using its definition

$$
X(-k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi(-k) n / N}
$$

- When the signal is real, its conjugate is itself $\Rightarrow x(n)=x^{*}(n)$
- Conjugating a complex exponential \Rightarrow changing the exponent's sign
- Can then rewrite $\Rightarrow X(-k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x^{*}(n)\left(e^{-j 2 \pi k n / N}\right)^{*}$
- Sum and multiplication can change order with conjugation

$$
X(-k)=\left[\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}\right]^{*}=X^{*}(k)
$$

Theorem (Parseval)
Let $X=\mathcal{F}(x)$ be the DFT of signal x. The energies of x and X are the same, i.e.,

$$
\sum_{n=0}^{N-1}|x(n)|^{2}=\|x\|^{2}=\|X\|^{2}=\sum_{k=0}^{N-1}|X(k)|^{2}
$$

- In energy of DFT, any set of consecutive freqs. would do. E.g.,

$$
\|X\|^{2}=\sum_{k=0}^{N-1}|X(k)|^{2}=\sum_{k=-N / 2+1}^{N / 2}|X(k)|^{2}
$$

Proof.

- From the definition of the energy of $X \Rightarrow\|X\|^{2}=\sum_{k=0}^{N-1} X(k) X^{*}(k)$
- From the definition of the DFT of $x \Rightarrow X(k):=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}$
- Substitute expression for $X(k)$ into one for $\|X\|^{2}$ (observe conjugation)

$$
\|X\|^{2}=\sum_{k=0}^{N-1}\left[\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}\right]\left[\frac{1}{\sqrt{N}} \sum_{\tilde{n}=0}^{N-1} x^{*}(\tilde{n}) e^{+j 2 \pi k \tilde{n} / N}\right]
$$

Proof.

- Distribute product and exchange order of summations \Rightarrow sum over k first

$$
\|X\|^{2}=\sum_{n=0}^{N-1} \sum_{\tilde{n}=0}^{N-1} x(n) x^{*}(\tilde{n})\left[\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j 2 \pi k n / N} \frac{1}{\sqrt{N}} e^{+j 2 \pi k \tilde{n} / N}\right]
$$

- Pulled $x(n)$ and $x^{*}(\tilde{n})$ out because they don't depend on k
- Innermost sum is the inner product between $e_{\tilde{n} N}$ and $e_{n N}$. Orthonormality:

$$
\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j 2 \pi k n / N} \frac{1}{\sqrt{N}} e^{+j 2 \pi k \tilde{n} / N}=\left\langle e_{\tilde{n} N}, e_{n N}\right\rangle=\delta(\tilde{n}-n)
$$

Thus $\Rightarrow\|X\|^{2}=\sum_{n=0}^{N-1} \sum_{\tilde{n}=0}^{N-1} x(n) x^{*}(\tilde{n}) \delta(\tilde{n}-n)=\sum_{n=0}^{N-1} x(n) x^{*}(n)=\|x\|^{2}$

- True because only terms $n=\tilde{n}$ are not null in the sum

Theorem
The DFT of a linear combination of signals is the linear combination of the respective DFTs of the individual signals,

$$
\mathcal{F}(a x+b y)=a \mathcal{F}(x)+b \mathcal{F}(y)
$$

- In particular...
\Rightarrow Adding signals $(z=x+y) \Rightarrow$ Adding DFTs $(Z=X+Y)$
\Rightarrow Scaling signals $(y=a x) \Rightarrow$ Scaling DFTs $(Y=a X)$

Proof.

- Let $Z:=\mathcal{F}(a x+b y)$. From the definition of the DFT we have

$$
Z(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1}[a x(n)+b y(n)] e^{-j 2 \pi k n / N}
$$

- Expand the product, reorder terms, identify the DFTs of x and y

$$
Z(k)=\frac{a}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}+\frac{b}{\sqrt{N}} \sum_{n=0}^{N-1} y(n) e^{-j 2 \pi k n / N}
$$

- First sum is DFT $X=\mathcal{F}(x)$. Second sum is DFT $Y=\mathcal{F}(y)$

$$
Z(k)=a X(k)+b Y(k)
$$

- DFT of discrete cosine of freq. $k_{0} \Rightarrow x(n)=\frac{1}{\sqrt{N}} \cos \left(2 \pi k_{0} n / N\right)$
- Can write cosine as a sum of discrete complex exponentials

$$
x(n)=\frac{1}{2 \sqrt{N}}\left[e^{j 2 \pi k_{0} n / N}+e^{-j 2 \pi k_{0} n / N}\right]=\frac{1}{2}\left[e_{k_{0} N}(n)+e_{-k_{0} N}(n)\right]
$$

- From linearity of DFTs $\Rightarrow X=\mathcal{F}(x)=\frac{1}{2}\left[\mathcal{F}\left(e_{k_{0} N}\right)+\mathcal{F}\left(e_{-k_{0} N}\right)\right]$
- DFT of complex exponential $e_{k N}$ is delta function $\delta\left(k-k_{0}\right)$. Then

$$
X(k)=\frac{1}{2}\left[\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)\right]
$$

- A pair of deltas at positive and negative frequency k_{0}
- DFT of discrete sine of freq. $k_{0} \Rightarrow x(n)=\frac{1}{\sqrt{N}} \sin \left(2 \pi k_{0} n / N\right)$
- Can write sine as a difference of discrete complex exponentials

$$
x(n)=\frac{1}{2 j \sqrt{N}}\left[e^{j 2 \pi k_{0} n / N}-e^{-j 2 \pi k_{0} n / N}\right]=\frac{-j}{2}\left[e_{k_{0} N}(n)-e_{-k_{0} N}(n)\right]
$$

- From linearity of DFTs $\Rightarrow X=\mathcal{F}(x)=\frac{j}{2}\left[\mathcal{F}\left(e_{-k_{0} N}\right)-\mathcal{F}\left(e_{k_{0}} N\right)\right]$
- DFT of complex exponential $e_{k N}$ is delta function $\delta\left(k-k_{0}\right)$. Then

$$
X(k)=\frac{j}{2}\left[\delta\left(k+k_{0}\right)-\delta\left(k-k_{0}\right)\right]
$$

- Pair of opposite complex deltas at positive and negative frequency k_{0}
- Cosine has real part only (top). Sine has imaginary part only (bottom)

- Cosine is symmetric around $k=0$. Sine is antisymmetric around $k=0$.
- Real and imaginary parts are different but the moduli are the same

- Cosine and sine are essentially the same signal (shifted versions)
\Rightarrow The moduli of their DFTs are identical
\Rightarrow Phase difference captured by phase of complex number $X\left(\pm k_{0}\right)$

