
Graph Signal Processing

Alejandro Ribeiro

Dept. of Electrical and Systems Engineering

University of Pennsylvania

Email: aribeiro@seas.upenn.edu

Web: alelab.seas.upenn.edu

May 17, 2021

A. Ribeiro Graph Neural Networks 1

aribeiro@seas.upenn.edu
alelab.seas.upenn.edu


Graphs and Graph Signals
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Graphs

I A graph is a triplet G = (V, E ,W), which includes vertices V, edges E , and weights W

⇒ Vertices or nodes are a set of n labels. Typical labels are V = {1, . . . , n}

⇒ Edges are ordered pairs of labels (i , j). We interpret (i , j) ∈ E as “i can be influenced by j .”

⇒ Weights wij ∈ R are numbers associated to edges (i , j). “Strength of the influence of j on i .”
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Symmetric Graphs

I A graph is symmetric or undirected if both, the edge set and the weight are symmetric

⇒ Edges come in pairs ⇒ We have (i , j) ∈ E if and only if (j , i) ∈ E

⇒ Weights are symmetric ⇒ We must have wij = wji for all (i , j) ∈ E
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Weighted Symmetric Graphs

I Graphs can be directed or symmetric. Separately, they can be weighted or unweighted.

I Most of the graphs we encounter in practical situations are symmetric and weighted
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Graph Signal

I Consider a given graph G with n nodes, edge set E and weights W

I A graph signal is a vector x ∈ Rn in which component xi is associated with node i

I To emphasize that the graph is intrinsic to the signal we may write the signal as a pair ⇒ (G, x)
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Graph Signals are Very Common in Information Processing

I Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution
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Identify the author of a text of unknown provenance

Segarra et al ’16,, arxiv.org/abs/1805.00165

Recommendation Systems

Predict the rating a customer would give to a product

Ruiz et al ’18,, arxiv.org/abs/1903.12575

I In both cases there exists a graph that contains meaningful information about the problem to solve
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Authorship Attribution with Word Adjacency Networks (WANs)

I Nodes represent different function words and edges how often words appear close to each other

⇒ A proxy for the different ways in which different authors use the English language grammar

William Shakespeare
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Christopher Marlowe
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I WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016, doi.org/10.1353/shq.2016.0024
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Recommendation System with Collaborative Filtering

I Nodes represent different customers and edges their average similarity in product ratings

⇒ The graph informs the completion of ratings when some are unknown and are to be predicted

Variation Diagram for Original (sampled) ratings Variation Diagram for Reconstructed (predicted) ratings

I Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal

Ruiz-Gama-Marques-Ribeiro, Invariance-Preserving Localized Activation Functions for Graph Neural Networks, arxiv.org/abs/1903.12575
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Graphs in Multiagent Physical Systems

I Graphs are more than data structures ⇒ They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems

Coordinate a team of agents without central coordination

Tolstaya et al ’19,, arxiv.org/abs/1903.10527

Wireless Communications Networks

Manage interference when allocating bandwidth and power

Eisen-Ribeiro ’19,, arxiv.org/abs/1909.01865

I The graph is the source of the problem ⇒ Challenge is that goals are global but information is local
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Time and Space are Representable by Graphs

I We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

I Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space
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Covariance Matrices are Also Representable by Graphs

I A covariance matrix Σ with entries ((Σ))ij = σij is also representable with a graph

⇒ One that has self loops to represent the variances σii

I A realization x of a random signal X is a signal supported on the covariance matrix graph
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are customers. Signal values are product ratings. Edges are cosine similarities of past scores
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are drones. Signal values are velocities. Edges are sensing and communication ranges
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are transceivers. Signal values are QoS requirements. Edges are wireless channels strength
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

I Nodes are points in time. Signal values. Edges denote time causality
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are pixels. Signal values are luminances. Edges denote spatial proximities
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are entries. Signal values. Edges denote crosscovariances
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Graph Signal Processing

I Techniques to process signals on graphs that...

⇒ Generalize techniques developed for time, space, and random signals

⇒ Recover techniques developed for time, space, and random signals as particular cases

I Graph Fourier transform ⇒ Recovers DFT, 2D-DFT and PCA as particular cases

I Graph Convolutional Filters ⇒ Recovers time and spatial convolutions as particular cases
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Graph Shift Operators

I Graphs have matrix representations. Which in this course, we call graph shift operators (GSOs)
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Adjacency Matrices

I The adjacency matrix of graph G = (V, E ,W) is the sparse matrix A with nonzero entries

Aij = wij , for all (i , j) ∈ E

I If the graph is symmetric, the adjacency matrix is symmetric ⇒ A = AT . As in the example
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0 w12 w13 0 0
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0 0 w53 w54 0

 .
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Adjacency Matrices for Unweighted Graphs

I For the particular case in which the graph is unweighted. Weights interpreted as units

Aij = 1, for all (i , j) ∈ E
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0 1 1 0 0
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1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

 .
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Neighborhoods and Degrees

I The neighborhood of node i is the set of nodes that influence i ⇒ n(i) := {j : (i , j) ∈ E}

I Degree di of node i is the sum of the weights of its incident edges ⇒ di =
∑
j∈n(i)

wi j =
∑

j :(i,j)∈E}

wi j
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I Node 1 neighborhood ⇒ n(1) = {2, 3}

I Node 1 degree ⇒ n(1) = w12 + w13
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Degree Matrix

I The degree matrix is a diagonal matrix D with degrees as diagonal entries ⇒ Dii = di

I Write in terms of adjacency matrix as D = diag(A1). Because (A1)i =
∑

j wij = di
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0 0 0 2 0
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Laplacian Matrix

I The Laplacian matrix of a graph with adjacency matrix A is ⇒ L = D− A = diag(A1)− A

I Can also be written explicitly in terms of graph weights Aij = wij

⇒ Off diagonal entries ⇒ Lij = −Aij = −wij

⇒ Diagonal entries ⇒ Lii = di =
∑
j∈n(i)

wij

L =


2 −1 −1 0 0
−1 3 −1 −1 0
−1 −1 3 0 −1

0 −1 0 2 −1
0 0 −1 −1 2
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Normalized Matrix Representations: Adjacencies

I Normalized adjacency and Laplacian matrices express weights relative to the nodes’ degrees

I Normalized adjacency matrix ⇒ Ā := D−1/2AD−1/2 ⇒ Results in entries (Ā)ij =
wij√
didj

I The normalized adjacency is symmetric if the graph is symmetric ⇒ ĀT = Ā.
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Normalized Matrix Representations: Laplacians

I Normalized Laplacian matrix ⇒ L̄ := D−1/2LD−1/2. Same normalization of adjacency matrix

I Given definitions normalized representations ⇒ L̄ = D−1/2
(

D− A
)

D−1/2 = I− Ā

⇒ The normalized Laplacian and adjacency are essentially the same linear transformation.

I Normalized operators are more homogeneous. The entries in the vector A1 tend to be similar.
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Graph Shift Operator

I The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix

S = A

Laplacian Matrix

S = L

Normalized Adjacency

S = Ā

Normalized Laplacian

S = L̄

I If the graph is symmetric, the shift operator S is symmetric ⇒ S = ST

I The specific choice matters in practice but most of results and analysis hold for any choice of S
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Laplacians and Graph Signal Variability

I The variability of a graph signal has to be measured with respect to the structure of the graph

I The quadratic form of the graph’s Laplacian provides this measure
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Variability of a Graph Signal on a Symmetric Graph

I We are given a graph signal x and a symmetric graph with edge set E and edge weights wij

Definition (Total Variation Energy)

The total variation energy of the signal x with respect to the graph G is defined as

TV(x) :=
1

2

∑
(i,j)∈E

wi j(xi − xj)
2

I (xi − xj)
2 ⇒ Energy of difference between the signal values xi and xj observed at node i and node j

I Weighted by the edge weight wi j and summed across all edges
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Total Variation Energy

I In the total variation energy TV(x) :=
1

2

∑
(i,j)∈E

wi j(xi − xj)
2 there is a term associated to each edge
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2w35(x3 − x5)2

I The factor 2 appear because the graph is symmetric. Each arrow counts for two edges
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Laplacian Quadratic Form

I We are given a graph signal x and a symmetric graph with Laplacian L

I The Laplacian quadratic form is the function ⇒ xTLx (row × matrix × column = scalar)

Theorem (Laplacian Quadratic Form)

The Laplacian quadratic form of graph signal x is equal to its total variation energy

xTLx = TV(x) =
1

2

∑
(i,j)∈E

wij(xi − xj)
2

I The Laplacian quadratic form measures the variability of different graph signals
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Proof of quadratic form variability

Proof:

I This is an annoying algebraic calculation

I Isolate an edge e = (ij) ∈ E and define a symmetric graph with edge e. It’s Laplacian satisfies

((Le))ij = ((Le))ji = −wij ((Le))ii = ((Le))jj = wij

I Since the matrix Le has only four nonzero entries, the quadratic form xTLex satisfies

xTLex = xiwijxi + xjwijxj − xiwijxj − xjwijxi = wij

(
xi − xj

)2

I To conclude notice that we have L =
1

2

∑
(i,j)∈E

Le and therefore ⇒ xTLx =
1

2

∑
(i,j)∈E

xTLex �
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Eigenvalues and Eigenvectors of the Laplacian

I We say vk is an eigenvector of L with associated eigenvalue λk if we have Lvk = λkvk

Corollary (Variability of Laplacian Eigenvectors)

The total variation energy of eigenvector vk is its associated eigenvalue ⇒ TV(vk) = λk

Proof: As per the Laplacian quadratic form theorem ⇒ TV(vk) = vT
k Lvk = vT

k λkvk = λk �

I Eigenvectors of the Laplacian represent different rates of variability ⇒ A (graph) Fourier transform
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Graph Fourier Transform

I The Graph Fourier Transform (GFT) is a tool for analyzing graph information processing systems
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Eigenvectors and Eigenvalues of Shift Operator

I We work with symmetric graph shift operators ⇒ S = SH

I Introduce eigenvectors vi and eigenvalues λi of graph shift operator S ⇒ Svi = λivi

⇒ For symmetric S eigenvalues are real. We have ordered them ⇒ λ0 ≤ λ1 ≤ . . . ≤ λn

I Define eigenvector matrix V = [v1, . . . , vn] and eigenvalue matrix Λ = diag([λ1; . . . ;λn])
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Eigenvectors of Symmetric Shift Operators are Orthonormal

Theorem (Eigenvectors Orthogonality of Symmetric Matrices)

Consider a symmetric shift operator (matrix) S, with eigenvalues v and u associated with different

eigenvalues λ and µ. The eigenvectors are orthogonal

vHu = 0.

I The eigenvectors of a symmetric shift operator can be used to define a unitary transform
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Proof of Orthogonality Theorem

Proof:

I Since eigenvectors v and u are respectively associated with eigenvalues λ and µ, we have that

Sv = λv, Su = µu

I Since the matrix S is symmetric and real we have that SH = S. For here, it follows that(
uHSv

)H
= vHSHu = vHSu

I Substitute Sv = λv on the leftmost side. Substitute Su = µu on the rightmost side.(
λuHv

)H
=
(

uHSv
)H

= vHSHu = vHSu = µvHu

I For this to be true with λ 6= µ we must have that vHu = 0
�
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Eigenvector Matrix

I The kth column of the eigenvector matrix V = [v1, . . . , vn] is the kth eigenvector vk of the shift S

I Since the eigenvectors vk are orthonormal, the eigenvector matrix V is unitary ⇒ THT = I

VHV =

[
v1 · · · vk · · · vn

]


vH1
...
vHk
...
vHn





vH1 v1 · · · vH1 vk · · · vH1 vn
...

. . .
...

. . .
...

vHk v1 · · · vHk vk · · · vHk vn
...

. . .
...

. . .
...

vHn vn · · · vHn vk · · · vHn vn


=



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1
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Eigenvector Matrix

I The eigenvalue matrix Λ is a diagonal matrix with diagonal entries equal to eigenvalues of S

Λ =



λ1 · · · 0 · · · 0
...

. . .
....

. . .
...

0 · · · λk · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · λn

 = diag(λ1, . . . , λn)

I Eigenvalue decomposition ⇒ We can write the shift operator as S = VΛVH . Indeed,

SV = S[v1, . . . , vn] = [Sv1, . . . , Svn] = [λ1v1, . . . , Sλn] = VΛ

I Multiply from the right by VH and use the fact that V is unitary to eliminate VVH = I
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The Graph Fourier Transform

Graph Fourier Transform

Given a graph shift operator S = VΛVH , the graph Fourier transform (GFT) of graph signal x is

x̃ = VH x

I GFT ≡ projection on the eigenspace of the graph shift operator ⇒ x̃k = vH
k x = 〈x, vk〉

I We say x̃ is a graph frequency representation of x. A representation in the graph frequency domain
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The Inverse Graph Fourier Transform

Inverse Graph Fourier Transform

Given a graph shift operator S = VΛVH , the inverse graph Fourier transform (iGFT) of GFT x̃ is

˜̃x = V x̃

I Given that VHV = I, the iGFT of the GFT of signal x recovers the signal x

˜̃x = V x̃ = V
(

VH x
)

= Ix = x
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Conservation of Energy

Theorem (The GFT Preserves Energy)

The energy ‖x‖2 of a signal and the energy of its GFT ‖x̃‖2 are the same ⇒ ‖x‖2 = ‖x̃‖2

I Given that VHV = I, we have the chain of equalities

‖x̃‖2 = x̃H x̃ = xHVVHx = xH Ix = xHx = ‖x‖2
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A Decomposition in Terms of Different Modes of Variability

I Because of inverse theorem, we can write graph signals as ⇒ x = Vx̃ =
n∑

k=1

x̃kvk

I Because of Parseval, the energy
∣∣x̃k ∣∣2 of the kth coefficient is the energy vk contributes to x

I Use the Laplacian as shift operator ⇒ S = L

⇒ Total variation energy of Laplacian eigenvectors ⇒ TV(vk) = λk =
1

2

∑
(i,j)∈E

wij(xi − xj)
2

⇒ Eigenvectors are sorted according to their variability ⇒ TV(v1) ≤ TV(v2) ≤ . . . ≤ TV(vn)

I The Laplacian GFT decomposes signals x into components of progressively higher variability
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Other Shift Operators

I This variability interpretation is true for Laplacian shift operators only

I Adjacency matrix ⇒ If S = A this is sort of true if the node degrees are similar

I Normalized Laplacian ⇒ If S = L̄, analogous interpretation holds for normalized variation energy

T̄V(vk) =
1

2

∑
(i,j)∈E

wij

(
xi√
di
− xj√

dj

)2

I Normalized Adjacency ⇒ If S = Ā the same holds because eigenvectors coincide ⇒ L̄ = I− L̄
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The GFT of Discrete Time Signals
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Adjacency “Matrix” for directed line graph

I We can describe discrete time signals as signals supported on a directed line graph

Description of time with a directed line graph The adjacency “matrix” of a directed line graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

S = A =


· · ·

· 0 0 0 ·
· 1 0 0 ·
· 0 1 0 ·
· 0 0 1 ·
· · ·



I This adjacency “matrix” has a GFT associated with it. Is it related to the DTFT?
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Time Shifting of Time signals

I A time shifting of a time signal means moving the signal up on the time line ⇒ Follow the arrows

x0

x1

x2 x3

0 1 2 3

x

x−1
x0

x1

x2

0 1 2 3

Sx

I Time shift is reinterpreted as multiplication by the adjacency matrix S of the line graph

S x =


· · ·

· 0 0 0 ·
· 1 0 0 ·
· 0 1 0 ·
· 0 0 1 ·
· · ·




·
x0

x1

x2

x3

·

 =


·
x−1

x0

x1

x2

·



I Product Sx is such that
(

Sx
)
n

= xn−1 ⇒ Signal components move up on the time line
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Time Shifting of a Complex Exponential

I Particularize to the case in which the graph signal x is a complex exponential ⇒ xn = e j2πfnTs

I Moving components up in the time line for this particular signal yields

(Sx)n = e j2πf (n−1)Ts = e j2πf (−1)Tse j2πf nTs = e−j2πfTsxn

I Complex exponential x is an eigenvector of the shift “matrix” S with associated eigenvalue e−j2πfTs
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The DTFT is a Particular Case of the GFT

I Let efTs be a discrete time complex exponential with components xn = e j2πfnTs

Theorem (GFT of a Directed Line Graph)

The components of the GFT of a discrete time signal x are ⇒ x̃k = 〈x, efTs 〉 =
+∞∑
−∞

xne
−j2πfnTs

I Which is the exact same definition of the DTFT of the signal x
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DFT, 2D-DFT, and PCA transforms are Particular Cases of GFTs

I DFT ≡ GFT of directed cycle graph (connect node n − 1 to node 1)

I 2D-DFT ∼ GFT of grid graph ⇒ In fact, it’s complicated. But true enough

I PCA equiv GFT of covariance marix graph ⇒ Self evident. Same definition
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Graph Convolutional Filters

I Graph convolutional filters are the tool of choice for the linear processing of graph signals
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Convolutions in Time

I Convolutional filters process signals in time by leveraging the time shift operator

x0

x1

x2 x3

xn

x−1
x0

x1

x2

xn−1 = shift(xn)

x−2

x−1
x0

x1

xn−2 = shift2(xn)

x−3 x−2

x−1
x0

xn−3 = shift3(xn)

z−1 z−1 z−1

+ + + +

xn xn−1 xn−2 xn−3

h0 h1 h2 h3

yn

h0xn h1xn−1 h2xn−2 h3xn−3

I The time convolution is a linear combination of time shifted inputs ⇒ yn =
K−1∑
k=0

hkxn−k
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Time Signals Represented as Graph Signals

I Time signals are representable as graph signals supported on a line graph S ⇒ The pair (S, x)

x0

x1

x2 x3

0 1 2 3

x

x−1
x0

x1

x2

0 1 2 3

Sx

x−2

x−1
x0

x1

0 1 2 3

S2x

x−3 x−2

x−1
x0

0 1 2 3

S3x

I Time shift is reinterpreted as multiplication by the adjacency matrix S of the line graph

S3 x = S
[

S2 x
]

= S
[

S
(

S x
) ]

=


: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :




:
x0
x1
x2
x3
:

 =


:

x−3
x−2
x−1
x0

:


I Components of the shift sequence are powers of the adjacency matrix applied to the original signal

⇒ We can rewrite convolutional filters as polynomials on S, the adjacency of the line graph
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The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph

x0

x1

x2 x3
x−1

x0

x1

x2
x−2

x−1
x0

x1
x−3 x−2

x−1
x0

z−1 z−1 z−1

+ + + +

x shift(x) shift2(x) shift3(x)

h0 h1 h2 h3

y = h ? x

h0xn h1xn−1 h2xn−2 h3xn−3

I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx
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The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph

x0

x1

x2 x3

0 1 2 3

x−1
x0

x1

x2

0 1 2 3

x−2

x−1
x0

x1

0 1 2 3

x−3 x−2

x−1
x0

0 1 2 3

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ?S x

h0S0x h1S1x h2S2x h3S3x

I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx
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The Time Convolution Generalized to Arbitrary Graphs

I If we let S be the shift operator of an arbitrary graph we recover the graph convolution

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ?S x

h0S0x h1S1x h2S2x h3S3x
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Graph Filters

I Given graph shift operator S and coefficients hk , a graph filter is a polynomial (series) on S

H(S) =
∞∑
k=0

hkSk

I The result of applying the filter H(S) to the signal x is the signal

y = H(S) x =
∞∑
k=0

hkSkx

I We say that y = h ?S x is the graph convolution of the filter h = {hk}∞k=0 with the signal x
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From Local to Global Information

I Graph convolutions aggregate information growing from local to global neighborhoods

I Consider a signal x supported on a graph with shift operator S. Along with filter h = {hk}K−1
k=0

1

x1

2

x2

3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

I Graph convolution output ⇒ y = h ?S x = h0S0 x +h1S1 x +h2S2 x +h3S3 x + . . . =
K−1∑
k=0

hkSk x
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Transferability of Filters Across Different Graphs

I The same filter h = {hk}∞k=0 can be executed in multiple graphs ⇒ We can transfer the filter

Graph Filter on a Graph

1

x1

2

x2

3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Same Graph Filter on Another Graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8

I Graph convolution output ⇒ y = h ?S x = h0S0 x +h1S1 x +h2S2 x +h3S3 x + . . . =
∞∑
k=0

hkSk x

I Output depends on the filter coefficients h, the graph shift operator S and the signal x
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Graph Convolutional Filters as Diffusion Operators

I A graph convolution is a weighted linear combination of the elements of the diffusion sequence

I Can represent graph convolutions with a shift register ⇒ Convolution ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

y = h ?S x
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Graph Frequency Response of Graph Filters

I Graph filters admit a pointwise representation when projected into the shift operator’s eigenspace
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Graph Fiters in the Graph Frequency Domain

Theorem (Graph frequency representation of graph filters)

Consider graph filter h with coefficients hk , graph signal x and the filtered signal y =
∞∑
k=0

hkSkx.

The GFTs x̃ = VHx and ỹ = VHy are related by

ỹ =
∞∑
k=0

hkΛk x̃

I The same polynomial but on different variables. One on S. The other on eigenvalue matrix Λ
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Proof of Theorem

Proof: Since S = VΛVH , can write shift operator powers as Sk = VΛkVH . Therefore filter output is

y =
∞∑
k=0

hkSkx =
∞∑
k=0

hkVΛkVHx

I Multiply both sides by VH on the left ⇒ VHy = VH
∞∑
k=0

hkVΛkVHx

I Copy and identify terms. Output GFT VHy = ỹ. Input GFT VHx = x̃. Cancel out VHV

VHy = VH
∞∑
k=0

hkVΛkVHx ⇒ ỹ =
∞∑
k=0

hkΛk x̃ �
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Graph Frequency Response

I In the graph frequency domain graph filters are a diagonal matrices ⇒ ỹ =
∞∑
k=0

hkΛk x̃

I Thus, graph convolutions are pointwise in the GFT domain ⇒ ỹi =
∞∑
k=0

hkλ
k
i x̃i = h̃(λi )x̃i

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k
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Observations on the Graph Frequency Response

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k

I Frequency response is the same polynomial that defines the graph filter ⇒ but on scalar variable λ

I Frequency response is independent of the graph ⇒ Depends only on filter coefficients

I The role of the graph is to determine the eigenvalues on which the response is instantiated
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Graph Frequency Response is Independent of the Graph

I Graph filter frequency response is a polynomial on a scalar variable λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

I Completely determined by the filter coefficients h = {hk}∞k=1 . The Graph has nothing to do with it

λ

h̃(λ)
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The Graph Instantiates Specific Eigenvalues

I A given (another) graph instantiates the response on its given (different) specific eigenvalues λi

I Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies.

λ1 λ̂1 λi λ̂i λn λ̂n
λ

h̃(λ)
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Learning with Graph Signals

I Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals
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Empirical Risk Minimization

I Machine learning (ML) on graphs (or not) ≡ empirical risk minimization (ERM) on graphs (or not)

I In ERM we are given:

⇒ A training set T containing observation pairs (x, y) ∈ T . Assume equal length x, y,∈ Rn.

⇒ A loss function `(y, ŷ) to evaluate the similarity between y and an estimate ŷ

⇒ A function class C

I Learning means finding function Φ∗ ∈ C that minimizes loss `
(

y,Φ(x)
)

averaged over training set

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x),
)

I We use Φ∗(x) to estimate outputs ŷ = Φ∗(x) when inputs x are observed but outputs y are unknown
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Empirical Risk Minimization with Graph Signals

I In ERM, the function class C is the degree of freedom available to the system’s designer

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x)
)

I Designing a Machine Learning ≡ finding the right function class C

I Since we are interested in graph signals, graph convolutional filters are a good starting point
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Learning with a Generic Linear Function (A Bad Idea)

I Input / output signals x / y are graph signals supported on a common graph with shift operator S

I Function class ⇒ Generic Linea function mapping inputs to ooutputs ⇒ Φ(x) = Hx = Φ(x;H)

x
z = H x

z = Φ(x; H)

I Learn ERM solution restricted to graph filter class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ( x; H )
)

⇒ Optimization is over matrices H. It does not take advantage of the graph
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Learning with a Graph Convolutional Filter (A Good Idea)

I Input / output signals x / y are graph signals supported on a common graph with shift operator S

I Function class ⇒ graph filters of order K supported on S ⇒ Φ(x) =
K−1∑
k=0

hkSkx = Φ(x;S,h)

x
z =

K−1∑
k=0

hk Sk x
z = Φ(x; S,h)

I Learn ERM solution restricted to graph filter class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ( x; S, h )
)

⇒ Optimization is over filter coefficients h with the graph shift operator S given
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Learning Ratings in Recommendation Systems

I Formulate recommendation systems as ERM problems that predict ratings that users give to items
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Recommendation Systems

I In a recommendation system, we want to predict the rating a user would give to an item

I Collect ratings that some users give to some items ⇒ These are rating histories

I Exploit product similarities to predict ratings of unseen user-item pairs

I Example 1 ⇒ In an online store items are products and users are customers

I Example 2 ⇒ In a movie repository items are movies and users are watchers
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Ratings and Sampled Ratings

I For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

I We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u
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Ratings and Sampled Ratings

I For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

I We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u
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Product Ratings as Graph Signals

I Construct product similarity graph with weights wij represent likelihood of similar scores

I Interpret vector of ratings yu of user u as a graph signal supported on the product similarity graph

I The observed ratings xu of user u are a subsampling of this graph signal.

I Our goal is to learn to reconstruct the rating graph signal yu from the observed ratings xu

I Build similarity graph using available ratings. Use of expert knowledge is common as well
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Product Similarity Graph

I Consider pair of products i and j . Restrict attention to set of users that rated both products ⇒ U ij

I Mean ratings restricted to users that rated products i and j

µij =
1

#(U ij)

∑
u∈Uij

xui µji =
1

#(U ij)

∑
u∈Uji

xuj

I Similarity score = correlation restricted to users in U ij

σij =
1

#(U ij)

∑
u∈Ui j

(
xui − µij

)(
xuj − µji

)
I Weights = normalized correlations ⇒ wij = σij

/√
σiiσjj
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Loss for Measuring Rating Prediction Quality

I Given observed ratings xu the AI produces estimates Φ(xu). We want Φ(xu) to approximate yu

`
(

yu,Φ(xu)
)

=
1

2

∥∥∥ yu − Φ(xu)
∥∥∥2

I In reality, we want to predict the rating of specific item i

`
(

yu,Φ(xu)
)

=
1

2

(
eTi yu − eTi Φ(xu)

)2

I Where ei is a vector in the canonical basis ⇒ (ei )i = 1, (ei )j = 0 for j 6= i
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Training Set

I For each item i let U i be the set of users that have rated i . Construct training pairs (x, y) with

y =
(

eTi xu
)

ei x = xu − y for all u ∈ U i , for all i

I Extract the rating xui of item i . Record into graph signal y

I Remove rating xui from xu. Record to graph signal x

I Repeat for all users in the set U i of users that rated i

I Repeat for all items ⇒ Training set T
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Learning Rating Predictions

I Parametrized AI Φ(xu) = Φ(xu;H). We want to find solution of the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

I A bad idea ⇒ Linear regression with a generic linear function.

I A good idea ⇒ Graph filters.
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Learning Ratings with Graph Filters

I We use graph filters to learn ratings in recommendation systems

I We contrast with the use of linear regression with a generic linear function
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Movie Ratings Dataset

I Use MovieLens-100k as benchmark ⇒ 106 ratings given by U = 943 users to M = 1, 682 movies

I The ratings for each movie are between 1 and 5. From one star to five starts

I Train and test several machine learning parametrizations.
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Empirical Risk Minimization

I We predict ratings using AI that results from solving the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

I Parameterizations that ignore data structure= ⇒ Linear regression. Fully connected NNs

I Parameterizations that leverage data structure= ⇒ Graph filters. Graph NNs
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Linear Regression and Graph Filters

I Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

I Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable
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I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries
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Linear Regression and Graph Filters

I Linear regression works even worse in the test set

I The test MSE of the graph filter is about the same as the training MSE. It generalizes
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I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries
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Permutation Equivariance of Graph Filters

I We will show that graph convolutional filters are equivariant to permutations

A. Ribeiro Graph Neural Networks 80



Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrix if it has binary entries so that P ∈ {0, 1}n×n and it

further satisfies P1 = 1 and PT1 = 1.

I The product PT x reorders the entries of the vector x.

I The product PTSP is a consistent reordering of the rows and columns of S
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Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrix if it has binary entries so that P ∈ {0, 1}n×n and it

further satisfies P1 = 1 and PT1 = 1.

I Since P1 = PT1 = 1 with binary entries ⇒ Exactly one nonzero entry per row and column of P

I Permutation matrices are unitary ⇒ PTP = I. Matrix PT undoes the reordering of matrix P
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Relabeling of Graph Signals

I If (S, x) is a graph signal, (PTSP,PT x) is a relabeling of (S, x). Same signal. Different names

Graph signal x Supported on S
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Graph signal x̂ = PT x supported on Ŝ = PT SP
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11
x11

7
x7

I Processing should be label-independent ⇒ Permutation equivariance of graph filters and GNNs
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Graph Filters and the Permutation of Graph Signals

I Graph filter H(S) is a polynomial on shift operator S with coefficients hk . Outputs given by

H(S)x =
K−1∑
k=0

hkSkx

I We consider running the same filter on (S, x) and permuted (relabeled) (Ŝ, x̂) = (PTSP,PT x)

H(S)x =
K−1∑
k=0

hkSkx H(Ŝ)x̂ =
K−1∑
k=0

hk Ŝk x̂

I Filter H(S)x ⇒ Coefficients hk . Input signal x. Instantiated on shift S

I Filter H(Ŝ)x̂ ⇒ Same Coefficients hk . Permuted Input signal x̂. Instantiated on permuted shift Ŝ
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Permutation Equivariance of Graph Filters

Theorem (Permutation equivariance of graph filters)

Consider consistent permutations of the shift operator Ŝ = PTSP and input signal x̂ = PT x. Then

H(Ŝ) x̂ = H
(
PTSP

) (
PT x

)
= PTH(S) x

I Graph filters are equivariant to permutations ⇒ Permute input and shift ≡ Permute output
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Proof or Permutation Equivariance of Graph Filters

Proof: Write filter output in polynomial form. Use permutation definitions Ŝ = PTSP and x̂ = PT x

H(Ŝ)x̂ =
K−1∑
k=0

hk Ŝk x̂ =
K−1∑
k=0

hk
(

PTSP
)k

PT x

I In the powers
(

PTSP
)k

, P and PT undo each other (PTP = I) ⇒
(

PTSP
)k

= PT
(

S
)k

P

I Substitute this into filter’s output expression. Cancel remaining PPT = I product. Factor PT

H(Ŝ)x̂ =
K−1∑
k=0

hkPTSkPPT x =
K−1∑
k=0

hkPTSk Ix = PT
K−1∑
k=0

hkSkx = PTH(S)x �
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Signal Processing with Graph Filters is Independent of Labeling

I We request signal processing independent of labeling ⇒ Graph filters fulfill this request

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S
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Graph signal x̂ = PT x supported on Ŝ = PT SP
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Signal Processing with Graph Filters is Independent of Labeling

I We request signal processing independent of labeling ⇒ Graph filters fulfill this request

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Filter’s output H(S)x Supported on S
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Filter’s Output H(Ŝ)x̂ supported on Ŝ
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Signal Processing with Graph Filters is Independent of Labeling

I We request signal processing independent of labeling ⇒ Graph filters fulfill this request

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Filter’s output H(S)x Supported on S
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Equivariance theorem ⇒ H(Ŝ)x̂ = PT H(S)x
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Equivariance to Permutations and Signal Symmetries

I Equivariance to permutations allows GNNs to exploit symmetries of graphs and graph signals

I By symmetry we mean that the graph can be permuted onto itself ⇒ S = PTSP

I Equivariance theorem implies ⇒ H
(

S
)(

PT x
)

= H
(

PTSP
)(

PT x
)

= PTH
(

S
)(

x
)

From observing x supported on S
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Learn to process PT x supported on S = PT SP
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Symmetry is Rare but Quasi-Symmetry is Common

I Graph not symmetric but close to symmetric ⇒ perturbed version of a permutation of itself
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I It can be shown that graph filters can lack stability to deformations ⇒ Graph Neural Networks

⇒ But this is a story for another day ⇒ Register for ESE 514. Or visit gnn.seas.upenn.edu
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