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Discrete time signals

» To infinity, but no beyond = Discrete but infinite time index n € Z.

» Discrete time signal x is a function mapping Z to complex value x(n)
x:Z—C (values x(n) can be, often are, real)

» Sampling time T is implicit. Time elapsed from sample n to n+ 1

» So is sampling frequency f; = 1/T;
» E.g., a shifted delta function §(n — ng) has a spike at time n = ng

d(n — ng)

1 ifn=n
6(n—no) _{ 0 else ’

no Ts

» Signal continuous to plus and minus infinity (unlike discrete signals)
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Inner product and energy

» Given two signals x and y define the inner product of x and y as

o

(x,y)=>_ x(n)y"(n)

n=—o0

» Projection of x on y. How much of x falls in y direction.

» How much x and y are like each other = orthogonality = unrelated

» Define the energy of the signal as the inner product with itself
o0 o0 o0
= Gy = D X =D (P + > ba(n)P
n=-—o00 n=-—oo n=-—o0

> Sums extend to plus and minus infinity (they are series, not sums)

= Inner product may not exist. Energy may be infinite
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The discrete time Fourier transform (DTFT)

» The DTFT of discrete signal x is the function X : R — C with values
X(f):=Ts Y x(n)e 2T
n=—o0

» Denote as X = F(x). Argument f is continuous and called frequency
Sum need not exist = Not all discrete time signals have a DTFT

» Definition depends on sampling time Tg.

» Fourier transform (FT) has continuous input and continuous output

v

DFT is also well matched = It has discrete input and discrete output
» DTFT is mismatched = It has discrete input but continuous output
= A little odd, but of little consequence
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DTFT is also an inner product

» Define er7. with values esr.(n) = T;e/2"""Ts. Write as inner product

X(f) = (x,er7.) = Ts Z n)efr.(n)

n=—oo

> As in the case of the FT and the DFT, the DTFT value X(f):
= Is the projection of x onto discrete oscillation of freq. f

= Measures how much x(n) resembles discrete oscillation of freq. f

» Conceptually identical to FT & DFT = Why a third definition?
= All three, discrete time, discrete, and continuous signals exist

= Sampling = Discrete time signal from continuous time signal

» Analytical tool (as the FT). Not a computational tool (as the DFT)
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DTFT of a square pulse

» Consider square pulse of odd length M + 1

. M M
|_|M+1(n):1 |f—7§n§? 1
Mu+1 (n) =0 else M <n
_%TS %TS
» To compute the pulse DTFT X = F (1) evaluate the definition
M/2

X(f) =T Z HMJrl(n)eij‘n'fnTs =T, Z e,jzﬂ-fn-,—s

n=—o00 n=—M/2

» DTFT is an analytical tool. Sum must be evaluated by hand. Ugh

Signal and Information Processing Sampling 7



DTFT of a square pulse (computation, 1 of 3)

» Write down the individual elements of the sum to express DTFT as

X(f) — 2rf(=4)Ts _’_ejzwf(—%ﬂ)n +.”+ej27rf(%71)Ts +ej27rf(%)T5

s

> Multiply by &2 (3)7s and &2 (=2)T to write the equalities

eijf(%)T;@ — G2rf(—H¥+3)Ts +ej27rf(f%+%)Ts T, +9127rf(77—)T5 +e,2wf(% )Ts
—J27Tf( )Ts ( ) ejwa(———%)Ts+ej27rf(—%+%)Ts+ +ej27Tf(7—f)Ts+ej27rf(%—%)Ts

s

» In the right hand side of these equalities most of the terms are the same...
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DTFT of a square pulse (computation, 2 of 3)

> First term in first row = second term in second row

» Second term in first row = third term in second row (unseen)

» Penultimate term in first row = last term in second row

ej27rf(%)T5X(f) _ + 2 (F+3)Ts

s

e (DT X _ i 1)

s

» Subtracting second row from first row only two terms survive

= The last term in the first row and the first term in the second row
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DTFT of a square pulse (computation, 3 of 3)

» Implementing the subtraction results in the equality

X(f) |:ej27rf(%)T5 B efj27rf(%)7-i| _ ejhf(%+%)Ts . ej27rf(7%f%)Ts
T. :

» Complex exponentials are conjugate. Subtraction cancels real parts
» We keep imaginary parts only, which are sines

X7(_Sf) [stin (27'rf (%) Tsﬂ — 2jsin (27rf (M2+1> Ts>

> Solve for X(f) and simplify terms. Pulse length T = (M + 1) T

sin (nf (M +1) Ty) sin (nf T)

sin (7rfT5) ~ “sin (7rfT5)

» The DTFT of a square pulse is a ratio of two sines
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DTFT of a square pulse

» Consider square pulse of odd length M + 1

Mmtr (n) =1 if—%gngg 1

Mmt1 (n) =0 else M <n

M M
‘TTS st

» The DTFT of a square pulse is a fast sine divided by a slow sine

__sin(nf(M+1)T,)  _ sin(nfT)
X =T sin (7f Ts) =T sin (7f T5)

» This expression is not very different from a sinc pulse
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Evaluation of the DTFT of a square pulse

» Sampling freq. f; = 100Hz. Pulse length in time T = 110ms pulse
= Resulting in M + 1 = 11 nonzero samples

DTFT X(f) of a square pulse of duration T = 110ms sampled fs = 100Hz (M = 11 nonzero samples)

12.0 T T

| | | | |
-150 —100 = —fs 50 = fs /2 0 50 = f5 /2 100 = fs 150

frequency f in Hertz

» DTFT is periodic, Focus on f € [—f5/2,1;/2]
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The DTFT of a square pulse and the sinc pulse

sin (nf T)
af T
» Fourier transform of unsampled pulse

» Similar to the sinc pulse = T = Tsinc(nfT)

DTFT X(f) of square pulse (fs = 100Hz, T = 90ms, M = 9)

10.0 T T T

-75 50 = fs /2 250 25 50 = f5 /2 75

frequency f in Hertz

> Some difference for f close to +£,/2.
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Pulses of dif|

» As the pulse widens, the DTFT concentrates. Same as FT and DFT
» As pulse widens difference with FT of continuous time pulse diminishes

DTFT X(f) of square pulse (fs = 100Hz, T = 30ms, M = 3) DTFT X(f) of square pulse (fs = 100Hz, T = 50ms, M = 5)

T T | T T

3 T T T

| | | | | | | | |
50 = fs/2 75 75 50 =f/2-250 25 50=fs/2 75

75 50 = f /2 -250 25

DTFT X(f) of square pulse (fs = 100Hz, T = 90ms, M = 9) DTFT X(f) of square pulse (fs = 100Hz, T = 170ms, M = 17)

10 T T T T T T T T T T
5 10 | —
0 0

I I I I I I I I I I
75 50 = fg /2 250 25 50 = fs/2 75 75 50 = f5/2 250 25 50 =f5/2 75
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Periodicity of DTFT

Theorem
The DFTF X = F(x) of discrete time signal x is periodic with period f,

X(f + f5) = X(f), for all f € R.

» Any frequency interval of length f; contains all DTFT information
= We will use the canonical set = f € [—f,/2,1;/2]

» For sampling time Ty, fregs. larger than f/2 have no physical meaning

= Frequency —f is (more or less) the same as frequency f
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Proof of periodicity property

Proof.
» Use the DTFT definition to write X(f + f;) as
X(f+£)=Ts Y x(n)e 2r+enTs

> Separate the complex exponential in two factors

X(f + fs) _ Ts Z X(n)eijanTseijTrfsnTs
n=—o00
> Use £, T. =1 in last factor = e J27fnTs — =271 — (ejz”)_" =1
» Substitute in previous expression and observe definition of DTFT

X(F+£)=T, > x(n)e > = X(f) 0

n=—o00
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The inverse (i)DTFT

» The iDTFT x of DTFT X, is the discrete time signal with elements
f/2 )
x(n) := / X(f)ePmTs df

—f/2
> We denote x = 7 '(X). Sampling time T (freq. £) implicit in X
» Sign in exponent changes with respect to DTFT.

» DTFT is an indefinite sum but iDTFT is a definite integral
= DTFT mismatch. Odd, but of little consequence

» Since DTFT X is periodic, any interval of width f; does it. E.g.

f/2 , fe ,
X(n):/ X(f)e/?minTs df:/ X ()2 7= df
/2 0
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Indeed, the iIDTFT is the inverse of the DTFT

Theorem
The iDTFT X of the DTFT X of the discrete time signal x is the signal x

% =F YX)=FHF(x)] = x.

» What a surprise. It's getting tired. But this is the last one.

» As usual, discrete time signals can be written as sums of oscillations

f./2 N/2
X(n) :/ ( )ej27TfI'IT5 df ~ Af Z X ej27rfknT5
—fs/2 n=—N/2

» Conceptual; cf. continuous signals. Not literal; cf. discrete signals.

Signal and Information Processing Sampling 19



Proof of inverse Fourier transform

Proof.
> We want to show = % = F '(X) = F '[F(x)] = x. Use definitions

fs/2 o
» Definition of inverse transform of X = X(7) := / X(f)e> s df
—f/2
> From definition of transform of x = X(f) := Ts Z x(n)e 2 "Ts
> Substituting expression for X(f) into expression for X(7i) yields
fs/2 > . .
= [ [ 55 ster] o
—fs/2 n=—oo
» Same as done for iDFT and iFT but with one integral and one sum
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Proof of inverse Fourier transform

Proof.

» Exchange integration with sum =- Integrate first over f, then sum over n

o /2

R(A)=Ts Y x(n){ / " &5 20T gf

n=—o0
» Pulled x(n) out because it doesn't depend on f

» Up until now we repeated steps we already did for iDFT and iFT
= They worked for iDFT but didn't for iFT =- They work here.

» The innermost integral we have computed repeatedly = It's a sinc

/2 )
/ 2 fiTs g=j2mfnTs yp fisinc(nfs(n — A) Ts) = fisinc(m(n — /))
—fs/2

» We used £, Ts = 1 in second equality. Recall that n and 7 are discrete
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Proof of inverse Fourier transform

Proof.
» Evaluate sinc for n =/ = fssinc(mw(n — 7)) = f;

» Evaluate sinc for n # /i = fisinc(n(n — /)) =0

» Lucky for us, the innermost integral was a delta function in disguise

/2 .
/ e127rfnT567J27rfnTs df = fsé(n _ ﬁ)
—t/2

» Substituting in expression for X(7i), only one term in sum is not null
= T.fs Z n)d(n — i) = x(f)
n=—o0
> fs Since we have X(/i) = x(Ai) for all i = X% = x O
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The DTFT of a constant

> Discrete time constant x has value x(n) =1 for all n. The DTFT is

o0 o0
X(f) —_ Ts Z X(n)e—jZanTs — Ts Z efj27rfn7—S

n=—oo n=—oo

» |t does not exist. For n =0, X(f) — oo, for other n oscillates

» This series, however, is the limit of something we have evaluated

M/2 .
' f(M+1)T.
X(f)= lim T, 27T — |im Tssm(7r (M+1)T,)

M— oo e /2 M— o0 sin(7rfTs)

» We know the DTFT of a square pulse looks like a (periodic) sinc
= To handle sinc limits we use a delta generalized function
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The limit of the DTFT of a square pulse

> As M grows, DTFT grows and narrows around f = 0. And f = £kf;

sin(mf(M +1)Ts)
sin(mfTs)

e e 1
I S ST 1 BT

» When multiplying by function Y(f) and integrating we recover Y'(0)

lim
M— o0

ki tF, /2 -
/ v(f sin(nf(M+1)Ts) df = Y (k)
k

fo—f/2 s Sin(ﬂ'ﬂ—s)
» We already defined the delta function as the entity with this property

Signal and Information Processing Sampling 25



The Dirac train

» We can then define the DTFT of a constant with delta functions
= Observe we have to recover signal values f = £kf; for all k

» The DTFT of a constant is then defined as a sum of delta functions

k=00
X(F)= 3 o(f — kf)

k=—00

—afy —3fs —2f —fs fo 2fs  3fs  4fs

» We call this signal a train of deltas, a Dirac train, or a Dirac comb
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Dirac train preserves consistency of iDTFT

» Dirac train has no meaning in isolation = Sum and integrate

» For any Y(f) multiplication with Dirac train and integration yields

/OO Y(f)X(f)df:/ Y (f) Z 8(f — kf) df = Z Y (f — kf)

k=—o00 k=—o00

> Recovers the values of Y(f) at the points where the train has spikes

» If we restrict integration range, the iDTFT also recovers the constant

fs/2 fs/2 k=00 P
/ ( ejQTrfnTs df = / Z 6(f_kf)ej27rfnTs df = ejQwOnTs -1

—fs/2 f5/2 k= — oo

» The Dirac train definition preserves consistency of iDTFT
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A Dirac train in the time domain

» For continuous time index t define continuous signal x as

Xc(t) =T i 5(1’— nTs)

n=—oo

4Ts 3Tg -2Ts -Ts 0 T 2Ts 3Ts 4T [
» This signal is a Dirac train in time. Not a discrete time constant

» Being continuous, the Dirac train has a Fourier transform X¢

xc(f)=/oo xc(t)e 72t dt:/oo [Ts i 6(t—nTs)} e i ft gt

—o0 —o0 n=——o0

» Can be related to the DTFT of a discrete time constant
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DTFT of a constant = FT of a Dirac train

» Exchange order of sum and integration, use delta function definition

oo

Xc(f)=Ts Z [/ §5(t — nT,)e 2rft dt} =T, Z e—J2mfnT,

n=—o0 n=—o00
» The sum on the right is the DTFT of a constant
X(f) _ Ts Z X(n)efj27r1‘nT5 — Ts Z efj27rfnT5
n=—00 n=—o00
» The DTFT of a constant and the FT of a Dirac train coincide
Xc(f)=X(f)= ) o(f - kf)
k=—o0

» Both are Dirac trains in frequency with spacing fs
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The Dirac train - Dirac train FT pair

» FT of Dirac train with spacing T is a Dirac train with spacing f;

xc(t) = i S(t—nT,) = Xc(f) = i A

n=—o00 k=—00

» The set of Dirac trains is an invariant class with respect to the FT

]_-71

4Ts -3Tg 2Ts -Ts 0 Ts 2Ts 3Ts 4Ts T 4fs 3fs 2fs -fs O fy  2fs 3fs 4fs

» This is a Fourier transform pair because both are continuous signals
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Fundamentally diffe

» Discrete time constant sampled at T, = DTFT = Dirac train spaced f;

F
R
F1

Ph—

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts t -4fs -3fs -2fs -fs O fs  2fs 3fs 4fs f

» Dirac train spaced every Ty = FT = Dirac train spaced every f;

F-1

4Ts -3Ts 2Ts -Ts 0 Ts 2Ts 3Ts 4Ts t afs 3fs 2fs fs O fs 2f; 3fs 4fs [

» Discrete time constant fundamentally different from continuous time train
» Thus, DTFT of constant fundamentally different from FT of Dirac train
» But they coincide =- Something deeper is at play here ... (to be continued)

Signal and Information Processing Sampling 32



Sampling

Discrete Time Signals and Fourier transforms
Inverse discrete time Fourier transform
DTFT of a constant

Fourier transform of a Dirac train

Sampling

Discussions

Signal reconstruction

Signal and Information Processing Sampling 33



Sampling

» Consider continuous time signal x and sampling time T; (freq. f)

» The sampled signal x; is a discrete time signal with values
xs(n) = x(nTs)
» Creates discrete time signal x; from continuous time signal x

» We've been doing this since first day. We want to understand it now

= Information lost from x when discarding all but samples x(nTs)?

x —>| Sample = T; —> Xs

TS

X I Xs

-4Ts -3Ts -2Ts -Ts O Ts 2Ts 3Ts 4Ts t

Signal and Information Processin, Samplin, 34
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Sampling as multiplication by a Dirac train

» Equivalently, we represent sampling as multiplication by a Dirac train

(o)
xs(t) =x(t) x Ts Y 6(t—nT,)
» Indeed, since the only value that is relevant for §(t — nTs) is x(nTy)
o0
xs(t)=Te > x(nT)d(t —nTs)

» We can construct x; if given x5 and construct x; if given x

T, Iy

-4Ts -3Ts -2Ts -Ts O Ts 2Ts 3Ts 4Ts -4Ts -3Ts -2Ts -Ts O Ts 2Ts 3Ts 4Ts
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DTFT & FT of sampled signals coincide

Theorem
The DTFT Xs = F(xs) of the sampled signal xs and the FT X5 = F(xs)
of the Dirac sampled signal xs coincide

» True for all fregs., not just between +£,/2. FT X;(f) is periodic

» We already saw this property for sampling continuous time constants

= Discrete time constant and Dirac train

AT -3Tg-2Ts -Ts 0 Ts 2Ts 3Ts 4Ts L AT -3Tg-2Ts -Ts 0 Ts 2Ts 3Ts 4Ts L
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DTFT & FT of sampled signals coincide (proof)

Proof.
> Write the definition of the FT X5 = F(xs) of Dirac sampled signal

oo

xé(f):/oo {Ts > x(nTs)d(tfnTs)e_ﬂ"”] df

-0 n=—o00

» Exchange the order of summation and integration

oo oo

X(f)=T: > {/

n=—o0 -

x(nTs)d(t — nTs)e 27t df}

» Multiplying by delta and integrating recovers value at spike. Thus,

Xs(F)=Te D x(nTe)e 27T = T 37 se(n)e 27T = X.(f)

n=—oo n=—o00o

» We use xs(n) = x(nTs) and definition of DTFT in last two equalities [
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Product in time convolution in frequency

» When we convolve signals in time we multiply their spectra
» Duality = When we multiply them in time we convolve their spectra

= Don't need to prove. It has to be true because iFT is like an FT

» We obtain Dirac sampled signal x5 by multiplying x with Dirac train

(o)
xs(t) =x(t) x Ts > 6(t—nT,)
» Spectrum Xj; is convolution of X = F(x) with the FT of Dirac train
X; = X *]-“[Ts > b(t— nTs)}
n=—o00

» Fourier transform of the Dirac train (T,) is another Dirac train ()
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The spectrum of the Dirac sampled signal

» Spectrum Xs convolves X with a Dirac train with spacing f;

X5:X*[ i 5(t—kfs)}

k=—o0

o0
» But convolution is a linear operation = X5 = Z X % 0(f — kfy)

k=—o0

o
» Convolving with shifted delta is a shift = Xs(f) = Z X(f — kfs)

k=—o00
Theorem
Spectrum of sampled signal is a sum of shifted versions of original spectrum

oo

Xo(F)=Xs(F)= > X(f — kf)

k=—o0

Signal and Information Processin, Samplin, 39
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Spectrum periodization

» We start with the spectrum X of x and the Dirac train in frequency

» Sampling to create x; = Multiplication with time Dirac train (Ty)
» Which in frequency domain entails convolution with Dirac train (f;)

» Which is equivalent to summing shifted copies of the spectrum X

3f;/2 A /2 0 f/2 fs 3 /2 26 5f5 /2 f

» FT X of continuous time signal x
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Spectrum periodization

» We start with the spectrum X of x and the Dirac train in frequency

> Sampling to create x; = Multiplication with time Dirac train (Ty)
» Which in frequency domain entails convolution with Dirac train (f;)

» Which is equivalent to summing shifted copies of the spectrum X

-
36, /2 A /2 0 f/2 fs 3 /2 26 5f5 /2 f

» First convolution step is to duplicate and shift spectrum to kf;
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Spectrum periodization

» We start with the spectrum X of x and the Dirac train in frequency

> Sampling to create x; = Multiplication with time Dirac train (Ty)

» Which in frequency domain entails convolution with Dirac train (f;)

» Which is equivalent to summing shifted copies of the spectrum X

: : :
-3f; /2 s fs /2 0 fs/2 s 3f5 /2 26 st /2f

» Second convolution step is to sum all shifted copies
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Information loss

» When sampling x to xs we lose information at high frequencies
= Everything that happens above £ /2 is lost
= Fregs. close to f;/2 distorted by superposition with fregs. above f;/2

-3f; /2 s fs/2 0 fs/2 fs 365 /2 2f; s /2f

» We say that the sampling process results in spectral aliasing

= When £, is small, severe aliasing destroys all information
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Increasing sampling time

» As we increase the sampling time, aliasing becomes less severe

, , , , ,
. ; . ; . ; . ; .
-3f5/2 -fs fs/2 0 fs/2 fs 3fs /2 2f; st /2f

» Aliasing eventually disappears =- Approximately true in general
» But exactly true for bandlimited signals.
= Signals with X(f) =0 for f ¢ [-W /2, W /2] (bandwidth W)
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Increasing sampling time

» As we increase the sampling time, aliasing becomes less severe

fs /2 0 /2 fe 3 /2 o

» Aliasing eventually disappears =- Approximately true in general
» But exactly true for bandlimited signals.
= Signals with X(f) =0 for f ¢ [-W /2, W /2] (bandwidth W)
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Increasing sampling time

» As we increase the sampling time, aliasing becomes less severe

‘ : :
e )2 0 £ /2 fs 3 /2 f

» Aliasing eventually disappears =- Approximately true in general
» But exactly true for bandlimited signals.
= Signals with X(f) =0 for f ¢ [-W /2, W /2] (bandwidth W)
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Sampling of bandlimited signals

» We have therefore proved the following theorem

Theorem

Let x be a signal of bandwidth W . If the signal is sampled at a frequency
f > W we have that

X5(f) = Xs(F) = X(f)
for all frequencies f € [—W /2, W /2]
» There is no loss of information = We can recover x from x;

» Use low pass filter to remove all frequencies outside of [—-W /2, W /2]
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Sampling of bandlimited signals

> Signal with bandwidth W = X(f) =0 for all f ¢ [-W /2, W /2]

» Upon sampling, spectrum is periodized but not aliased

X(f) Xs(f)
-w/2 w/2 f ~fs fs 2f; f

» This means that sampling entails no loss of information

= Can low pass xs to recover x.

Signal and Information Processin, Samplin, 49
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Non-vanishing sampling time

» That there is no loss of information is quite surprising
» We are discarding part of the signal, indeed, most of the signal

x(t) xs(n)
TS

— Lt

» It is reasonable to expect that we don’t lose information as T, — 0

= But we don't have to let the sampling time vanish

1 . . .
» Any sampling time Ts < W yields f; > W and no information loss
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Sampling of non-bandlimited signals

» Information in frequency components larger than £;/2 is lost

= Nothing we can do about that other than increasing f;

» Can't capture variability faster than f;/2 with sampling time T;

W

- ‘
36, /2 A f )2 0 fs/2 fs 36 /2 26, 56, /2f

» But aliasing is also distorting information in components below f;/2
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Prefiltering

» To avoid aliasing distortion we preprocess x with a low pass filter

» l.e., we transform x into signal x¢ with spectrum Xg = F(x¢,)

X() = X(Ona(f) X SO0

» The signal x¢, has bandwidth f; and can be sampled without aliasing

= Frequency components below £ /2 are retained with no distortion

Signal and Information Processing Sampling 52



Prefiltering in time domain

» Prefiltering can be implemented as convolution in the time domain

X, =xx*h

» where his iFT of low pass filter X(f)Mg, = h(t) = fsinc(nfst)

—{ h(t) = fssinc(nfst)

Xr, =xxh

Sample = T

» Convolution has to be implemented in continuous time (circuits)

Signal and Information Processing
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Low pass filter recovery

» Bandwidth W . Sample at f;, > W
» Can recover signal x from sampled signal x; with low pass filter

= What does exactly mean that “we use a low pass filter"?

X(f) Xs(f)
-w/2 w/2 f -f, f, 2f, f

» Can't filter discrete time signal and have continuous time magically appear
xs(n) x5(t)

STt

| t l t
> But we can filter the continuous time Dirac sampled signal x;(t)
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|deal sampling — reconstruction system

> We sample by keeping observations at nT; = xs(n) = x(nTs)

x(t) xs(n)
X Sample = T, |—° TI IIIT
ol
1 + o f t
» To reconstruct we modulate Dirac train = x5(t) = Ts Z xs(n)o(t — nTs)

» And low pass filter Dirac train xs = x = x5 * [fssinc(ﬂfst)]

xs(n) x5(t) x(t)
Gl atllll
f t f t t
X Modulate Dirac train x5(t) h(t) = fisinc(mfst) X h
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Reconstruction with a pulse train

» Dirac train is an abstract representation = Can't be generated

» Modulate train of (narrow) pulses p(t)

1/T 1
=T Z xs(n)p(t — nTy)

n=—oo

> If pulse is sufficiently narrow = x, =~ x;
> E Lsine (1) with T < T, = =
_ = y t
g p(t) sinc (7‘( T) with T < T ir \]/T v 3

» Scale pulse by x(n), shift to t = nT, sum all copies = convolution?

x(t)

T

N /\m N A ﬂ\ Ja\ N

/\\lz‘rs\/ ViV VIV ViV AV
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Dirac train representation of pulse train

» Pulse train modulation can be represented as convolution with x5
Xp = P * X5

» Indeed, use definition of x5 and convolution linearity to write p * x5 as

Xp = p * [Ts Z xs(n)o(t — nTs)} =T Z xs(n) [p x0(t — nTs)]
» Convolving with shifted delta is a shift = x,(t) = T sz p(t—nT;)
(1) o
1T

ALTILA Nl N AN ‘ ALLLA
VZTS\/ \/,TS\/ \/ { \/ Y TSV VQTS\/ t
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Spectrum of modulated pulse train

» Convolution in time is equivalent to multiplication in frequency

» Then, the spectrum of X, = F(x,) is the product of P = F(p) and Xs

Xo(F) = P(F)Xs(f) = P(f) D X(f — kf.)
k=—o00
» Reconstructed signal x, obtained by low pass filtering. FT X, = F(x;) is
X:(F) = P(A)Xs(F) Mg, () = P(F) Mg, (F) D X(f — kfy)

k=—o00

> Low pass filter eliminates all frequencies outside of [—f;/2, f;/2]

Xi(f) = P(f) Mg (F)X(7)

P(f) E X(f — kfs
X(f) e ) P(f) Mg, (HX(F)
——>| Modulate train = P(f) Low pass = Mg (f) ——>
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More on the spectrum of sampling and recovery

» We start with a bandlimited signal that we sample at f; = W

» Spectrum is = X(f)

, , , , , ,
. . f . Y . . . .
3f5/2 -fs fs /2 0 fs/2 fs 3fs /2 2f; st /2f
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More on the spectrum of sampling and recovery

» The spectrum X; of the sampled signal is periodization of X

= X,(f) = i X(f — kf5)

k=—o0

f T Y T Y T Y T Y
-3f5/2 -fs fs/2 0 fs/2 fs 3fs /2 2f; st /2f
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More on the spectrum of sampling and recovery

» To recover the signal we modulate a pulse train. Pulse FT is P(f)

= X,(f) ZXf—kf

k=—o00

36, /2 s )2 0 /2 fs 36 /2 26 st /2f
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More on the spectrum of sampling and recovery

» We finalize recovery with a low pass filter of bandwidth £,

= X(f) =T (FP(FX(F — kfs)

— T f T Y T f T t
-3f5/2 -fs fs /2 0 fs/2 fs 3fs /2 2f st /2f

» Good pulse for recovery = X(f) =1 for f € [-f5/2,15/2]
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Modulation of a sinc train

» Do we know a pulse with X(f) =1 for f € [-1f;/2,£/2] ?
= We do! = The sinc pulse fssinc(nfst)
» Don’t even need to use low pass filter = sinc pulse already lowpass

Theorem
A signal of bandwidth W < f; can be recovered from samples x(nTs) as

x(t) = > x(nTo)sinc(nfi(t — nT))
x(t)
1T
4T 3Ty 2T —“fs ‘ 'l"s ijs 3"fs 4"f5 t

» Reconstruction without a Dirac train = (mostly) implementable
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Modulation of a sinc train

» Do we know a pulse with X(f) =1 for f € [-1f;/2,£/2] ?
= We do! = The sinc pulse fssinc(nfst)
» Don’t even need to use low pass filter = sinc pulse already lowpass

Theorem
A signal of bandwidth W < f; can be recovered from samples x(nTs) as

x(t) = > x(nTo)sinc(nfi(t — nT))
x(t)
1T
4T 3Ty 2T, —“fs ‘ 'l"s ijs 3"fs 4"f5 t

» Reconstruction without a Dirac train = (mostly) implementable
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Modulation of a sinc train

» Do we know a pulse with X(f) =1 for f € [-1f;/2,£/2] ?
= We do! = The sinc pulse fssinc(nfst)
» Don’t even need to use low pass filter = sinc pulse already lowpass

Theorem
A signal of bandwidth W < f; can be recovered from samples x(nTs) as

oo

x(t) = > x(nTo)sinc(nfi(t — nT))

L]

-4Ts 23T -2Ts -Ts ‘ Ts 2Ts 3Ts 4Ts t

x(t)

/T

» Reconstruction without a Dirac train = (mostly) implementable
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Modulation of a sinc train

» Do we know a pulse with X(f) =1 for f € [-1f;/2,£/2] ?
= We do! = The sinc pulse fssinc(nfst)
» Don’t even need to use low pass filter = sinc pulse already lowpass

Theorem
A signal of bandwidth W < f; can be recovered from samples x(nTs) as

oo

x(t) = > x(nTo)sinc(nfi(t — nT))

n=—oo

» Reconstruction without a Dirac train = (mostly) implementable
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From the FT to the DFT

Discrete Time Signals and Fourier transforms
Inverse discrete time Fourier transform
DTFT of a constant

Fourier transform of a Dirac train

Sampling

Discussions

Signal reconstruction
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The DFT as a proxy for the FT

» We use the DFT for frequency analysis of continuous time signals
» Justifiable = They're approximately equal for small T and large N

X FT X
' b
sample = T chop = + %
' {
Xs ———————————> DTFT > X
' b
chop = [0, NTy] sample = il\sl
' {
Xp DFT > Xp

» Sampling = Can understand what is lost in the approximation
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Sampling = From the FT to the DTFT

» Sampling in time = periodization (not “chop") in frequency
xs(n) = x(nTs) = X(f)= > X(f—kf)

k=—o00

> Replicate. Shift to recenter at f = kf;. Add all shifted copies

» If signal is bandlimited = Xs(f) = X(f) for all f € [-£;/2,£/2]
= Spectra coincide perfectly = No approximation

X(f) Xs(f)
w2 wj2 f -f, f 2f, f

» In general, signals are not bandlimited and we expect some distortion
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Lost in approximation

» Signal is not bandlimited =- freqs. above f;/2 not seen in DTFT

» Without prefiltering = aliasing distorts fregs. close to f;/2

‘
36, /2 A f /2 0 /2 fs 36 /2 26 56, /2f

> With prefiltering = all freqs. below f;/2 approximated correctly

I | | I I
T T T T T T T T

.
-3f5/2 -fs fs/2 0 fs/2 fs 3fs /2 2f; st /2f

» Which means that we do use a low pass filter prior to sampling
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The DTFT as proxy for the FT (1 of 3)

» Filter = multiply in frequency by H = convolve in time with h

Xr=HX < Xxf=x%h

» Sample filtered signal Xy =- Periodize filtered spectrum X

x(n) =x(nTs) <= XJ(f)= > Xe(f —kf)

k=—o00

> Distortion (information loss) occurs during filtering step
= Frequency = Loss above f;/2 + some distortion if H not perfect
= Time = Convolution with h
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The DTFT as proxy for the FT (2 of 3)

» Continuous tlme signal x with FT X = Not nece;s(sza)rlly bandlimited

/’\ I

‘
-4Ts-3Ts 2T -Ts Ts 2Ts 3Ts 4Ts 3f5/2 S f)2 /2 fs 32 f

» Continuous time filtered signal x; = filtering smoothes (distorts) x
x¢(t) Xr(f)

T 71N

| | I I
T

-4Ts-3Ts-2Ts -Ts Ts 2Ts 3T5 4Ty ¢ 32 fs fe)2 /2 fs 3fs/2f

» Sampled signal xs obtained from filtered xr = No further distortion

sz n
4Ts-3Ts-2Ts -Ts Ts 2Ts 3Ts 4Ts L 3f5/2 -fs r'5/2 f5/2 fs 3f5/2 f
Sampling 73
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The DTFT as proxy for the FT (3 of 3)

> Filtering (chop) induces convolution. Sampling induces periodization

X ——>

FT

> X

|

conv. = x*h

l

|

filter = HX

i

Xf —————>

FT

e AT

l

sample = T

]

l

period = =+ f;

i

Xs

DTFT

- X

» Small distortion =- Make f; so that X(f) ~ 0 for f ¢ [—f;/2, /2]
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Windowing = From the DTFT to the DFT

» DTFT of sampled signal x; is = X,(f) = Z e—J2nfnT,

n=—o0
> Windowed signal = Nullify signal values outside of interval [0, N — 1]
xw(n) = xs(n), forall ne[0,N —1]

> Windowed signal is x,,(n) = 0 outside of window (all n ¢ [0, N — 1])

» DTFT of windowed signal x,, is = Xs(f) = Z e—J2mfnTs
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Spectrum after windowing

» Windowing equivalent to multiplication with square pulse

» More generically = define a window signal wy as one for which
wy(n) =0 forall n¢[0,N—1]

> Rewrite discrete time windowed signal as = x,,(n) = x(n) x wy(n)

v

Since multiplication in time is equivalent to convolution in frequency

Xu(F) = Xs(f) x Wi(f)

v

Multiplicative distortion given by DTFT of window function

v

If xs is already finite = No distortion (dual of bandlimited)

Signal and Information Processing Sampling 76



Frequency sampling

N—-1
» DTFT of windowed signal x,, is = X, (f) = T, Z x(n)e=2rfnTs
n=0

> Reinterpret x,, as discrete signal x4 (null vs undefined outside [0, N — 1])
N-1
» Signal x4 has a DFT (finite) = Xy(f) = Zxd(n)e_ﬂ”k"/'v
n=0
. . k
» Comparing expressions = X,, Nfs = Xa(k)
» Sample in time = periodize in frequency =- Dual property holds?

= Yes. The iDFT is a periodic operation
= We have x4(n+ N) = x4(N)
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The DFT as proxy for the DTFT (1 of 2)

» Window (chop) induces convolution. Sampling induces periodization

Xs ————————————> DTFT X

l l
window = xwy conv = X x W

} !

Xy ———> DTFT > Xy

| l
periodize = N sample = f;/N

J |

Xd DFT > Xy

» Small distortion = Make N so that x(n) ~ 0 for n ¢ [0, N — 1]
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The DFT as proxy for the DTFT (2 of 2)

> Discrete time signal xs with DTFT X; = Not necessarily finite

xs(n) Xs(f)
-NTs NTs N —3f;/2 —‘fs ,fs‘/z fs‘/z f; 3f5‘/2f

» Discrete time windowed signal x,, = windowing smoothes (distorts) X

X (1) Xw(f)
RUOREEE ] AT A
-NTs NTs aNTst 32 fs  -fs)2 /2 f  3fs)2f

» Discrete DFT Xy samples windowed DTFT X,, = No further distortion

il M, A,
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